SIMPLE EQUATION OF STATE
 FOR WATER, CARBON DIOXIDE, METHANE, AND THEIR MIXTURES

Sergey Pivovarov

Institute of Experimental Mineralogy RAS, 142432 Chernogolovka, Moscow district, Russia E-mail: serg@iem.ac.ru

Published online 05.03.2013

ABSTRACT

The PVT data of $\mathrm{H}_{2} \mathrm{O}\left(0-800^{\circ} \mathrm{C}\right.$, up to 60 kbar$), \mathrm{CO}_{2}\left(0 \div 800^{\circ} \mathrm{C}\right.$, up to 30 kbar$)$ and $\mathrm{CH}_{4}\left(-110 \div 350^{\circ} \mathrm{C}\right.$, up to 10 kbar$)$ were approximated by equation

$$
\mathrm{P}, \text { bar }=\operatorname{RTm}\left\{1+\mathrm{Am}-\mathrm{Bm} /(1+\beta \mathrm{m})-\mathrm{Cm}^{2}\left\{1-\left(1-(\mathrm{Am})^{2}\right) \exp \left(-(\mathrm{Am})^{2}\right)\right\}+\mathrm{Dm}^{3}\right\}
$$

Here R is gas constant $\left(0.0831441 \mathrm{dm}^{3} \times \mathrm{bar}^{2} \times \mathrm{mol}^{-1} \times \mathrm{K}^{-1}\right), \mathrm{T}$ is absolute temperature, m is molarity of gas (moles per dm^{3}), $\mathrm{A}, \mathrm{B}, \beta, \mathrm{C}, \mathrm{D}$ are model parameters (below $\mathrm{q}=298.15 / \mathrm{T}$):

```
\(\mathrm{A}_{\mathrm{H}_{2} \mathrm{O}}=0.022699+0.0049722 \mathrm{q} /\left(1+0.539 \mathrm{q}^{12}\right)\)
\(\mathrm{B}_{\mathrm{H}_{2} \mathrm{O}}=1.0629 \mathrm{q} \times \exp \{2.768(\mathrm{q}-1)\}\)
\(\beta_{\mathrm{H}_{2} \mathrm{O}}=0.060225 \mathrm{q}^{1.9}+0.20051 \mathrm{q}^{3.5}+0.0035436 \mathrm{q}^{14}\)
\(\mathrm{C}_{\mathrm{H}_{2} \mathrm{O}}=0.017461 \mathrm{q}^{2.9} /\left(1+6.701 \mathrm{q}^{2.3}\right)+0.0016763 \mathrm{q}^{2.4} /\left(1+1.993 \mathrm{q}^{8.3}\right)\)
\(\mathrm{D}_{\mathrm{H}_{2} \mathrm{O}}=0.000057006 \mathrm{q}+0.000022393 \mathrm{q} /\left(1+1.54 \mathrm{q}^{9}\right)\)
\(\mathrm{A}_{\mathrm{CO}_{2}}=0.053736 /(1+0.2497 \mathrm{q})\)
\(\mathrm{B}_{\mathrm{CO}_{2}}=0.16508 \mathrm{q} \times \exp \{0.673(\mathrm{q}-1)\}\)
\(\beta_{\mathrm{CO}_{2}}=0.016222 \mathrm{q}^{3.4}\)
\(\mathrm{C}_{\mathrm{CO}_{2}}=0.030447 \mathrm{q}^{3.1} /\left(1+6.015 \mathrm{q}^{2.7}\right)+0.0071431 \mathrm{q}^{2.3}\)
\(\mathrm{D}_{\mathrm{CO}_{2}}=0.00061996 \mathrm{q}\)
\(\mathrm{A}_{\mathrm{CH}_{4}}=0.049878 /(1+0.03094 \mathrm{q})\)
\(\mathrm{B}_{\mathrm{CH}_{4}}=0.088477 \mathrm{q} \times \exp \{0.2873(\mathrm{q}-1)\}\)
\(\beta_{\mathrm{CH}_{4}}=0.0041616 \mathrm{q}^{3}\)
\(\mathrm{C}_{\mathrm{CH}_{4}}=0.008267 \mathrm{q}^{2.9} /\left(1+2.267 \mathrm{q}^{2.2}\right)+0.0025764 \mathrm{q}^{2}\)
\(\mathrm{D}_{\mathrm{CH}_{4}}=0.00040808 \mathrm{q}\)
```

The properties of $\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}_{2}-\mathrm{CH}_{4}$ mixtures $\left(0-700^{\circ} \mathrm{C}\right.$, up to 6 kbar$)$ are consistent with $\mathrm{A}_{\mathrm{x}}=\sum \mathrm{A}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}$
$\mathrm{B}_{\mathrm{x}}=\mathrm{B}_{\mathrm{x}}{ }^{\mathrm{o}}-2 \mathrm{k}_{\mathrm{CO}_{2} \mathrm{H}_{2} \mathrm{O}}\left(\mathrm{B}_{\mathrm{CO}_{2}} \mathrm{~B}_{\mathrm{H}_{2} \mathrm{O}}\right)^{0.5} \mathrm{X}_{\mathrm{CO}_{2}} \mathrm{X}_{\mathrm{H}_{2} \mathrm{O}}-2 \mathrm{k}_{\mathrm{CH}_{4} \mathrm{H}_{2} \mathrm{O}}\left(\mathrm{B}_{\mathrm{CH}_{4}} \mathrm{~B}_{\mathrm{H}_{2} \mathrm{O}}\right)^{0.5} \mathrm{X}_{\mathrm{CH}_{4}} \mathrm{X}_{\mathrm{H}_{2} \mathrm{O}}$

$$
\begin{aligned}
& \mathrm{B}_{\mathrm{x}}{ }^{\mathrm{O}}=\left(\sum \mathrm{B}_{\mathrm{i}}^{1 / 2} \mathrm{X}_{\mathrm{i}}\right)^{2} ; \quad \mathrm{k}_{\mathrm{CO}_{2} \mathrm{H}_{2}=}=0.2286-0.6123 \mathrm{q}^{5}+0.6888 \mathrm{q}^{7}-0.256 \mathrm{q}^{9} \\
& \mathrm{k}_{\mathrm{CH}_{4} \mathrm{H}_{2} \mathrm{O}}=0.3595-1.653 \mathrm{q}^{5}+2.037 \mathrm{q}^{7}-0.731 \mathrm{q}^{9} ; \quad\left(\mathrm{k}_{\mathrm{CH}_{4} \mathrm{CO}_{2}}=0\right)
\end{aligned}
$$

$\beta_{\mathrm{x}}=\sum \beta_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}$
$\mathrm{C}_{\mathrm{x}}=\left\{\sum \mathrm{C}_{\mathrm{i}}^{1 / 3} \mathrm{X}_{\mathrm{i}}\right\}^{3}$
$\mathrm{D}_{\mathrm{x}}=\left\{\sum \mathrm{D}_{\mathrm{i}}^{1 / 4} \mathrm{X}_{\mathrm{i}}\right\}^{4}$
The fugacity of gas in the $\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}_{2}-\mathrm{CH}_{4}$ mixture may be found from $\mathrm{f}_{\mathrm{i}}=\mathrm{RTm}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}$ and

$$
\begin{aligned}
\ln Y_{i} & =\left(A_{i}+A_{x}\right) m-\left\{2 B_{i}^{0.5}\left(B_{x}^{0}{ }_{x}^{0.5}-\sum_{\mathrm{j}} \mathrm{k}_{\mathrm{ij}} \mathrm{~B}_{\mathrm{j}}^{0.5} \mathrm{X}_{\mathrm{j}}\right)-\mathrm{B}_{\mathrm{x}}\left(\beta_{\mathrm{i}} / \beta_{\mathrm{x}}\right)\right\} \ln \left(1+\beta_{\mathrm{x}} \mathrm{~m}\right) / \beta_{\mathrm{x}}-\mathrm{B}_{\mathrm{x}}\left(\beta_{\mathrm{i}} / \beta_{\mathrm{x}}\right) \mathrm{m} /\left(1+\beta_{\mathrm{x}} \mathrm{~m}\right) \\
& -1.5\left(\mathrm{C}_{\mathrm{i}} \mathrm{C}_{\mathrm{x}}^{2}\right)^{1 / 3} \mathrm{~m}^{2}\left[1-\exp \left\{-\left(\mathrm{A}_{\mathrm{x}} \mathrm{~m}\right)^{2}\right\}\right]-\mathrm{C}_{\mathrm{x}} \mathrm{~m}^{4} \mathrm{~A}_{\mathrm{i}} \mathrm{~A}_{\mathrm{x}} \exp \left\{-\left(\mathrm{A}_{\mathrm{x}} \mathrm{~m}\right)^{2}\right\}+(4 / 3)\left(\mathrm{D}_{\mathrm{i}} \mathrm{D}_{\mathrm{x}}^{3}\right)^{1 / 4} \mathrm{~m}^{3}
\end{aligned}
$$

INTRODUCTION

The equation of state is a very useful tool for understanding of various geological phenomena. Since the geology deals with complex mixtures of fluids at high parameters, high accuracy of calculations seems to be inaccessible. Because of this, multiparametric and, potentially exact approaches are weakly applicable, since they are not efficient and even senseless (e.g., negative volume) above the experimental range. Thus, less accurate, but simpler approaches, having ability for more or less successful extrapolation, and which may be easily extended to complex gas mixtures, are more relevant. The aim of present study is a creation of equation of state, which is 1) simple and convenient 2) more or less accurate 3) applicable to complex mixtures 4) applicable from low up to extreme T-P conditions. This study is focused on most important system $\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}_{2}$. However, both these fluid components are rather peculiar substances, and the model was also tested on PVT data for methane.

METHODS

The PVT data for methane were taken from equation of state of Setzmann and Wagner ($1991 ; 90-620 \mathrm{~K}$, up to 10 kbar), and finally were used up to 2 kbar in the range 160400 K and up to 0.5 kbar at $500-600 \mathrm{~K}$. Above 2 kbar , the model was fitted to experimental data from Robertson and $\operatorname{Babb}\left(1969 ; 35 \div 200^{\circ} \mathrm{C}\right.$, to 10 kbar$)$ and Morris ($1984 ;-20 \div 150^{\circ} \mathrm{C}$, to $6.9 \mathrm{kbar})$. Data from Kortbeek and Schouten (1990; $25^{\circ} \mathrm{C}$, to 10 kbar) were not used because of small inconsistence with data from Robertson and Babb (1969), which were preferred due to large temperature range covered by experiment. Data from Tsiklis (1971a; 50-400 ${ }^{\circ} \mathrm{C}$, to 8.5 kbar) were not used because of systematic deviation from other studies by 0.6 percent.

The PVT data for water at $0-800^{\circ} \mathrm{C}$ up to 1 kbar were taken from Rivkin and Aleksandrov (1984) steam tables. Above 1 kbar , model was fitted to the volumetric data from Bridgman (1912; $0 \div 80^{\circ} \mathrm{C}$, to 12 kbar), Grindley and Lind ($1971 ; 25 \div 150^{\circ} \mathrm{C}$, to 8 kbar), Hilbert et al. $\left(1981 ; 20 \div 600^{\circ} \mathrm{C}\right.$, to 4 kbar$)$, and values deduced from sound velocity measurements: Wiryana et al. (1998; $80 \div 200^{\circ} \mathrm{C}, 2.5-35 \mathrm{kbar}$), Abramson and Brown (2004; $\left.100 \div 400^{\circ} \mathrm{C}, 10 \div 60 \mathrm{kbar}\right)$. The data from Burnham et al. $\left(1969 ; 20 \div 900^{\circ} \mathrm{C}\right.$, to 8.9 kbar$)$ were not used because of systematic deviation from other studies (at 8 kbar and $20 \div 400^{\circ} \mathrm{C}$, the density is underestimated by 0.6%), except excellent agreement with data from Bridgman $1935\left(0 \div 100^{\circ} \mathrm{C}\right.$, to 12 kbar$)$, which also were rejected. The data from Bridgman (1942; 25$175^{\circ} \mathrm{C}$, up to melting curve, 36.56 kbar in maximum) were not used because these data were measured as increments in volume between 5 kbar and higher pressure (thus, "true" value for density at 5 kbar should be selected arbitrarily). The data from Von Köster and Frank (1969; $25 \div 600^{\circ} \mathrm{C}$, to 10 kbar) are in excellent agreement with results of other studies up to $150^{\circ} \mathrm{C}$, but at higher temperatures and highest pressures they seems to be in error (at 8 kbar and $600^{\circ} \mathrm{C}$, disagreement with data from Burnham et al., 1969 , is 1.9%; at 10 kbar and $400^{\circ} \mathrm{C}$, disagreement with data from Abramson and Brown, 2004, is 1.2%). The same is probably true for the data from Von Maier and Frank $\left(1966 ; 200 \div 850^{\circ} \mathrm{C}\right.$, up to 6 kbar ; at 6 kbar and $800^{\circ} \mathrm{C}$, disagreement with data from Burnham et al., 1969, is 3%). Data from fluid inclusion studies: Brodholt and Wood (1994; $900 \div 1600^{\circ} \mathrm{C}, 9.5-25 \mathrm{kbar}$), Withers et al. (2000; $710 \div 1100^{\circ} \mathrm{C}, 14 \div 40 \mathrm{kbar}$), Frost and Wood ($1997 ; 1000 \div 1400^{\circ} \mathrm{C}, 14.5 \mathrm{kbar}$) also were not considered because of small inconsistence with data from Abramson and Brown (2004) which were preferred. The values tabulated by Rice and Walsh (1957) were not used because it is prognostic equation of state.

In case of carbon dioxide, the model was fitted to volumetric data from Michels and Michels ($1935 ; 0-150^{\circ} \mathrm{C}$, to 0.25 kbar) Michels et al., ($1935 ; 0 \div 150^{\circ} \mathrm{C}$, up to 3.1 kbar), Vukalovich et al. $\left(1962,1963 ; 40 \div 750^{\circ} \mathrm{C}\right.$, up to 0.6 kbar$)$, Kennedy $\left(1954 ; 0-1000^{\circ} \mathrm{C}\right.$, up to 1.4 kbar), Jůza et al. $\left(1965 ; 50-475^{\circ} \mathrm{C}\right.$, up to 4 kbar$)$, Tsiklis et al. $\left(1971 \mathrm{~b} ; 50-400^{\circ} \mathrm{C}\right.$ up to 7 kbar), Shmonov and Shmulovich (1974; 408.2-707.5 ${ }^{\circ}$ C, up to 8 kbar), and data deduced from sound velocity measurements: Giordano et at. (2006; $27-427^{\circ} \mathrm{C}$, up to 80 kbar). There is large (up to 4.4%) discrepancy among various data, and construction of self-consistent calibration dataset is a problem, which has no unique solution. The following data were rejected from
final calibration dataset: from Kennedy (1954) above $800^{\circ} \mathrm{C}$, from Tsiklis et al. (1971b) above 5 kbar, from Shmonov and Shmulovich (1974) above 5 kbar and all data at $707.5^{\circ} \mathrm{C}$, from Giordano et al. (2006) above $200^{\circ} \mathrm{C}$.

The selected data were used for construction of isotherms at round temperatures. Above 1 kbar , data were used with large increments (1 or 2 kbar to 10 kbar , 5 kbar to 20 kbar and then 10 kbar). If necessary, experimental data were interpolated (or, slightly extrapolated) to round temperatures and pressures with use of approximations:

$$
\begin{align*}
& \mathrm{V}=\mathrm{V}\left(\mathrm{t}_{\mathrm{r}}{ }^{0} \mathrm{C}\right)+\mathrm{a}\left(\mathrm{t}-\mathrm{t}_{\mathrm{r}}\right)+\mathrm{b}\left(\mathrm{t}-\mathrm{t}_{\mathrm{r}}\right)^{2} \tag{1}\\
& \rho=\rho\left(\mathrm{P}_{\mathrm{r}}, \text { bar }\right)+\mathrm{c}\left(\mathrm{P}-\mathrm{P}_{\mathrm{r}}\right) /\left(1+\mathrm{d}\left(\mathrm{P}-\mathrm{P}_{\mathrm{r}}\right)\right) \tag{2}
\end{align*}
$$

Here t_{r} and P_{r} are round temperature and pressure, a, b, c, and d are adjusting parameters.
The isotherms were converted into "second virial function", $(Z-1) / \rho$, where ρ is density in $\mathrm{g} / \mathrm{cm}^{3}$, and $\mathrm{Z}=\mathrm{PV} / \mathrm{RT}$ is compressibility factor. Further the best fit values of parameters were determined at each round temperature, and initial approximation was found for each parameter. Then the completely parameterized equation was optimized with use of all selected data. In case of carbon dioxide and methane, the data on saturation pressure were not used, and thus, the model was applied solely for the range above $\sim 0.9 \mathrm{~T}_{\text {cr }}$. In case of water, temperature dependence of parameters was optimized for the range $200-800^{\circ} \mathrm{C}$, whereas in the range $0-150^{\circ} \mathrm{C}$ the best fit parameters at each round temperature were found with use of values of fugacity at saturation (this gives independent relation between parameters). Then the equation (for range $200-800^{\circ} \mathrm{C}$) and best fit values (in the range 0 $150^{\circ} \mathrm{C}$) for the most stable parameter were approximated with general equation. This equation was fixed, and procedure was repeated until the general approximation for the last parameter was found.

RESULTS AND DISCUSSION

The following equation was found more or less applicable:
P, bar $=\operatorname{RTm}\left\{1+\mathrm{Am}-\mathrm{Bm} /(1+\beta \mathrm{m})-\mathrm{Cm}^{2}\left\{1-\left(1-(\mathrm{Am})^{2}\right) \exp \left(-(\mathrm{Am})^{2}\right)\right\}+\mathrm{Dm}^{3}\right\}$
Here R is gas constant ($0.0831441 \mathrm{dm}^{3} \times \mathrm{bar}^{2} \times \mathrm{mol}^{-1} \times \mathrm{K}^{-1}$), T is absolute temperature, m is molarity of gas (moles per $\mathrm{dm}^{3} ; \mathrm{M}_{\mathrm{H}_{2} \mathrm{O}}=18.0152 \mathrm{~g} / \mathrm{mol}, \mathrm{M}_{\mathrm{CO}_{2}}=44.0098 \mathrm{~g} / \mathrm{mol}, \mathrm{M}_{\mathrm{CH}_{4}}=16.043$ $\mathrm{g} / \mathrm{mol}$), A, B, $\beta, \mathrm{C}, \mathrm{D}-$ are model parameters (below $\mathrm{q}=298.15 / \mathrm{T}$):

$$
\begin{align*}
& \mathrm{A}_{\mathrm{H}_{\mathrm{O}}}=0.022699+0.0049722 \mathrm{q} /\left(1+0.539 \mathrm{q}^{12}\right) \tag{4}\\
& \mathrm{B}_{\mathrm{H}_{\mathrm{O}} \mathrm{O}}=1.0629 \mathrm{q} \times \exp \{2.768(\mathrm{q}-1)\} \tag{5}\\
& \beta_{\mathrm{H}_{2} \mathrm{O}}=0.060225 \mathrm{q}^{1.9}+0.20051 \mathrm{q}^{3.5}+0.0035436 \mathrm{q}^{14} \tag{6}\\
& \mathrm{C}_{\mathrm{H}_{\mathrm{O}}}=0.017461 \mathrm{q}^{2.9} /\left(1+6.701 \mathrm{q}^{2.3}\right)+0.0016763 \mathrm{q}^{2.4} /\left(1+1.993 \mathrm{q}^{8.3}\right) \tag{7}\\
& \mathrm{D}_{\mathrm{H}_{2} \mathrm{O}}=0.000057006 \mathrm{q}+0.000022393 \mathrm{q} /\left(1+1.54 \mathrm{q}^{9}\right) \tag{8}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{A}_{\mathrm{CO}_{2}}=0.053736 /(1+0.2497 \mathrm{q}) \tag{9}
\end{equation*}
$$

$\mathrm{A}_{\mathrm{CH}_{4}}=0.049878 /(1+0.03094 \mathrm{q})$

$$
\begin{equation*}
\mathrm{B}_{\mathrm{CO}_{2}}=0.16508 \mathrm{q} \times \exp \{0.673(\mathrm{q}-1)\} \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\beta_{\mathrm{CO}_{2}}=0.016222 \mathrm{q}^{3.4} \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{C}_{\mathrm{CO}_{2}}=0.030447 \mathrm{q}^{3.1} /\left(1+6.015 \mathrm{q}^{2.7}\right)+0.0071431 \mathrm{q}^{2.3} \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{D}_{\mathrm{CO}_{2}}=0.00061996 \mathrm{q} \tag{13}
\end{equation*}
$$

$\mathrm{B}_{\mathrm{CH}_{4}}=0.088477 \mathrm{q} \times \exp \{0.2873(\mathrm{q}-1)\}$
$\beta_{\mathrm{CH}_{4}}=0.0041616 \mathrm{q}^{3}$
$\mathrm{C}_{\mathrm{CH}_{4}}=0.008267 \mathrm{q}^{2.9} /\left(1+2.267 \mathrm{q}^{2.2}\right)+0.0025764 \mathrm{q}^{2}$
$\mathrm{D}_{\mathrm{CH}_{4}}=0.00040808 \mathrm{q}$

Fig. 1. Density of water (a, b) carbon dioxide (c, d) and methane (e, f) in the critical region and at elevated pressures (some data were adjusted to round t and P):
a) water: data from Rivkin and Alexandrov (1984);
b) water: closed circles - data from Bridgman (1912), Grindley and Lind (1971), Hilbert et al. (1981), Wiryana et al. (1998); open circles - data from Bridgman (1935), Burnham et al. (1969); crosses - data from Von Maier and Frank (1966), Von Köster and Frank (1969);
c) carbon dioxide: data from Altunin (1975);
d) carbon dioxide: closed circles - data from Giordano et al. (2006); open circles data from Shmonov and Smulovich (1974); crosses - data from Tsiklis et al. (1971a);
e) methane: data from Setzmann and Wagner (1991);
f) methane: closed circles - data from Robertson and Babb, (1969), Morris, (1984), Kortbeek and Schouten (1990); open circles: data from Tsiklis et al. (1971b).

Parameter A was used twice: as an offset of second virial coefficient (second virial coefficient at infinite temperature) and as an exponential factor, which is similar to that in Benedict-Webb-Rubin equation (Benedict et al., 1940). This is artificial, and probably,
senseless correlation, but this simplification was found more or less applicable. The preexponential factor $\left(1-(\mathrm{Am})^{2}\right)$ may be omitted, and recalibration of the model gives approximately similar quality of description. However, this factor simplifies calculation of fugacity.

Fig. 1 shows behavior of Eq. (3) in the critical region and at elevated pressures. The modeled critical temperatures are $394.5,31.6$, and $-81.4^{\circ} \mathrm{C}$ for water, carbon dioxide and methane (experimental values are $374.1,31.1$, and $-82.6^{\circ} \mathrm{C}$), i.e. the model of water is most inaccurate. The accuracy of the model with respect to selected data is generally better than 0.3 $\%$ in molar volume, except critical region (deviations in pressure up to 10% for water, and up to 3% for carbon dioxide and methane).

Fig. 2. Density of water, carbon dioxide and methane at high pressures (some data were adjusted to round t and P):
a) water: closed circles - data from Wiryana et al. (1998), Abramson and Brown (2004); open circles - data from Brodholt and Wood (1993), Frost and Wood (1997), Withers et al. (2000);
b) carbon dioxide: data from Giordano et al. (2006);
c) density of shock-compressed methane (circles: Radousky et al., 1990), water (diamonds: Lysenga et al., 1982), and carbon dioxide (boxes: Nellis et al., 1991). Experimental or, in brackets, theoretical temperatures are indicated near each point. Solid curves were calculated with use of approximations: $T=T_{o}+a\left(\rho-\rho_{o}\right)^{b}$, where a and b are adjusting parameters.
d) density of shock-compressed water in the dense plasma region; data from Celliers et al. (2004, open circles) and from Podurets et al. (1972, solid circle); solid curve is the same as in Fig. 2c.

In Fig. 2, the model calculations are compared with experimental data at high pressures. Within the present approach, the values of density of water from fluid inclusion studies (Fig. 2a, open circles) are slightly inconsistent with values obtained from sound velocity measurements (Fig. 2a, closed circles). In the range $700-1100^{\circ} \mathrm{C}$, the model deviates from results of fluid inclusion studies by 1-2 \%, which is experimental uncertainty of these measurements.

As may be seen in Fig. 2b, the model deviates by 2.7% in maximum from values deduced from sound velocity by Giordano et al. (2006). The $400^{\circ} \mathrm{C}$ data seem to be inconsistent with lower temperature data (the best fit parameters, optimized for each isotherm and plotted against temperature, exhibit large step between 300 and $400^{\circ} \mathrm{C}$). It should be noted, that the values above 50 kbar were not really measured: for the measurements of sound velocity in the diamond anvil, it is necessary to know the values of refractive index; these values were measured up to 48 kbar and extrapolated to higher pressures. Thus, the values of sound velocity as well as density above 48 kbar should be considered as extrapolated ones. Up to 50 kbar , the present model is consistent with these data within the experimental error, 2 $\%$, as estimated by Giordano et al. (2006).

Within 2-4 \% the model agrees with Hugoniot data up to 800 kbar (Fig. 2c) and gives, at least, not senseless results for the dense plasma region (>2000 kbar; Fig. 2d).

The common mixing rules may be guessed on basis of common sense. For instance, the equation of state of water at very high pressure is simply
$\mathrm{P} \sim \mathrm{RT} \times \mathrm{D}_{\mathrm{H}_{2} \mathrm{O}} \mathrm{m}^{4}$
One may imagine that the compressed water consists of monomeric and dimeric molecules:
$\mathrm{P} \sim \mathrm{RT} \times \mathrm{D}_{\mathrm{H}_{2} \mathrm{O}}\left(\mathrm{m}_{1}+2 \mathrm{~m}_{2}\right)^{4}=\mathrm{RT}\left(\mathrm{D}_{1}{ }^{1 / 4} \mathrm{~m}_{1}+\mathrm{D}_{2}{ }^{1 / 4} \mathrm{~m}_{2}\right)^{4}$
Here m_{1} and m_{2} are molarities of monomeric and dimeric molecules, $\mathrm{D}_{1}=\mathrm{D}_{\mathrm{H}_{2} \mathrm{O}}$ and $\mathrm{D}_{2}=$ $16 \mathrm{D}_{\mathrm{H}_{2} \mathrm{O}}$ are model parameters for monomeric and dimeric water. So on, the mixture of components " 1 " and " 2 " may be modeled with use of the following mixing rule:
$\mathrm{D}_{\mathrm{x}}=\left(\mathrm{D}_{1}{ }^{1 / 4} \mathrm{X}_{1}+\mathrm{D}_{2}{ }^{1 / 4} \mathrm{X}_{2}\right)^{4}$
Similar considerations give general mixing rule, which is referred below as " $\mathrm{n}+1$ rule":
$\mathrm{N}_{\mathrm{x}}=\left(\Sigma \mathrm{N}_{\mathrm{i}}{ }^{1 /(\mathrm{n}+1)} \mathrm{X}_{\mathrm{i}}\right)^{\mathrm{n}+1}$
Here N is model parameter, and n is power factor of molarity in the equation of state, $\mathrm{Z}=$ $\mathrm{PV} / \mathrm{RT}=\mathrm{f}(\mathrm{m})$. As it was found by Benedict et al. (1942), similar relation is consistent with behavior of mixtures of hydrocarbons.

Another semi-empirical rule may be deduced from Van der Waals equation:
$\mathrm{P}=\mathrm{RT} /(\mathrm{V}-\mathrm{b})-\mathrm{a} / \mathrm{V}^{2}=\mathrm{RT}\left(\mathrm{m}+\mathrm{bm}^{2}+\mathrm{cm}^{3}+\mathrm{dm}^{4} \ldots ..\right)-\mathrm{am}^{2}$
Here $c=b^{2}, d=b^{3}$, etc. As it was suggested by Van der Waals (1881), parameter b of mixture ("uncompressible volume") is additive function of composition:
$\mathrm{b}_{\mathrm{x}}=\Sigma \mathrm{X}_{\mathrm{i}} \mathrm{b}_{\mathrm{i}}$
Based on this relation, one may obtain the common mixing rule for parameters $b, c=b^{2}, d=$ b^{3}, etc (see Eq. 23):
$\mathrm{N}_{\mathrm{x}}=\left(\Sigma \mathrm{N}_{\mathrm{i}}{ }^{1 / \mathrm{n}} \mathrm{X}_{\mathrm{i}}\right)^{\mathrm{n}}$
As above, N is model parameter, and n is power factor of molarity in the equation of state $\mathrm{Z}=$ $P V / R T=f(m)$. This relation is referred below as " n rule".

As it was suggested by Van der Waals (1881), parameter "a" in the Eq (23) is consistent with " $n+1$ rule" (Eq . 22). For binary mixture of "inert components", it is:
$\mathrm{a}_{\mathrm{x}}=\left(\Sigma \mathrm{a}_{\mathrm{i}}{ }^{0.5} \mathrm{X}_{\mathrm{i}}\right)^{2}=\mathrm{X}_{1}{ }^{2} \mathrm{a}_{1}+\mathrm{X}_{2}{ }^{2} \mathrm{a}_{2}+2\left(\mathrm{a}_{1} \mathrm{a}_{2}\right)^{0.5} \mathrm{X}_{1} \mathrm{X}_{2}$
If the specific interaction of component is significant, the additional parameter is necessary:
$a_{x}=X_{1}{ }^{2} a_{1}+X_{2}{ }^{2} a_{2}+2\left(1-k_{12}\right)\left(a_{1} a_{2}\right)^{0.5} X_{1} X_{2}=\left(\Sigma a_{i}{ }^{0.5} X_{i}\right)^{2}-2 k_{12}\left(a_{1} a_{2}\right)^{0.5} X_{1} X_{2}$
Here k_{12} is so called "coupling parameter". The value $\mathrm{k}_{12}>0$ indicates repulsive interaction, whereas $\mathrm{k}_{12}<0$ corresponds to attractive interaction. If to suggest, that the parameter " a " is formation constant of dimeric molecules, the value $2\left(1-\mathrm{k}_{12}\right)\left(\mathrm{a}_{1} \mathrm{a}_{2}\right)^{0.5}$ is formation constant of dimer, composed of two components.

Fig. 3. Compressibility factor, $\mathrm{Z}=\mathrm{PV} / \mathrm{RT}$, of $\mathrm{CO}_{2}-\mathrm{CH}_{4}(\mathrm{a}, \mathrm{b})$ and $\mathrm{CO}_{2}-\mathrm{H}_{2} \mathrm{O}(\mathrm{c}, \mathrm{d})$ mixtures. Data (a, b) from Seitz et al (1996); data (c, d) from Blencoe et al. (2001) and Seitz and Blencoe (1999), correspondingly, except these for pure water (Rivkin and Aleksandrov, 1984). Solid curves were calculated in accordance with Eqs (28-36).

Fig. 4 Molar volume of $\mathrm{CO}_{2}-\mathrm{H}_{2} \mathrm{O}(\mathrm{a}, \mathrm{b})$ and $\mathrm{CH}_{4}-\mathrm{H}_{2} \mathrm{O}$ (c) mixtures and Henry constant (d) of carbon dioxide and methane in water: data (a, b) from Sterner and Bodnar (1991, open circles) and from Shmulovich et al. (1980, solid circles); data (c) from Shmonov et al. (1993, open circles) and from Sretenskaya et al. (1986, solid circles); data (d) from Fernández-Prini et al. (2003); solid curves were calculated in accordance with Eqs (28-36); dashed curves (d) were calculated with $\mathrm{k}_{\mathrm{ij}}=0$.

By tries and errors, the following relations were found to be applicable for $\mathrm{H}_{2} \mathrm{O}-$ $\mathrm{CO}_{2}-\mathrm{CH}_{4}$ mixtures (see Figs 3 and 4):
$\mathrm{A}_{\mathrm{x}}=\sum \mathrm{A}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}$
$\mathrm{B}_{\mathrm{x}}=\mathrm{B}^{\mathrm{o}} \mathrm{x}_{\mathrm{x}}-2 \mathrm{k}_{\mathrm{CO}_{2} \mathrm{H}_{2} \mathrm{O}}\left\{\mathrm{B}_{\mathrm{CO}_{2}} \mathrm{~B}_{\mathrm{H}_{2} \mathrm{O}}\right\}^{1 / 2} \mathrm{X}_{\mathrm{CO}_{2}} \mathrm{X}_{\mathrm{H}_{2} \mathrm{O}}-2 \mathrm{k}_{\mathrm{CH}_{4} \mathrm{H}_{2} \mathrm{O}}\left\{\mathrm{B}_{\mathrm{CH}_{4}} \mathrm{~B}_{\mathrm{H}_{2} \mathrm{O}}\right\}{ }^{1 / 2} \mathrm{X}_{\mathrm{CH}_{4}} \mathrm{X}_{\mathrm{H}_{2} \mathrm{O}}$
$\mathrm{B}^{\mathrm{o}}{ }_{\mathrm{x}}=\left\{\sum \mathrm{B}_{\mathrm{i}}{ }^{1 / 2} \mathrm{X}_{\mathrm{i}}\right\}^{2}$
$\beta_{\mathrm{x}}=\sum \beta_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}$
$\mathrm{C}_{\mathrm{x}}=\left\{\sum \mathrm{C}_{\mathrm{i}}^{1 / 3} \mathrm{X}_{\mathrm{i}}\right\}^{3}$
$\mathrm{D}_{\mathrm{x}}=\left\{\sum \mathrm{D}_{\mathrm{i}}^{1 / 4} \mathrm{X}_{\mathrm{i}}\right\}^{4}$
$\mathrm{k}_{\mathrm{CO}_{2} \mathrm{H}_{2} \mathrm{O}}=0.2286-0.6123 \mathrm{q}^{5}+0.6888 \mathrm{q}^{7}-0.256 \mathrm{q}^{9}$
$\mathrm{k}_{\mathrm{CH}_{4} \mathrm{H}_{2} \mathrm{O}}=0.3595-1.653 \mathrm{q}^{5}+2.037 \mathrm{q}^{7}-0.731 \mathrm{q}^{9}$
$\left(\mathrm{k}_{\mathrm{CO}_{2} \mathrm{CH}_{4}}=0\right)$
Here, as above, q is 298.15/T. The mixing rule for parameters A_{x} and β_{x} was found close to " n rule" (Eq. 25), whereas parameters $\mathrm{B}_{\mathrm{x}}, \mathrm{C}_{\mathrm{x}}$ and D_{x} are consistent (or almost consistent) with " $\mathrm{n}+1$ rule" (Eq. 22). In case of aqueous mixtures, there is small repulsive ("hydrophobic") interaction, which is distinctive at low pressures, but fast decreases with density. Such behavior may be simulated solely via adjustment of term $\mathrm{Bm} /(1+\beta \mathrm{m})$.

To obtain the approximations for the coupling parameters (Eqs 34 and 35), the values of Henry constant (see Fig. 4d) were simply converted into coupling parameters, and these values were approximated (all volumetric data for mixtures were ignored). The values of Henry constant for carbon dioxide above $200^{\circ} \mathrm{C}$ and for methane above $300^{\circ} \mathrm{C}$ were found inconsistent with the model and were rejected (perhaps, this is due to uncertainty of the model in the critical region). In general, specific interaction is small: the prediction based on properties of pure components overestimates solubility of gases at $100-370^{\circ} \mathrm{C}$ by $2-3$ times (dashed curves in Fig 4 d ; below $100^{\circ} \mathrm{C}$, the model of water is overparameterized and thus, behavior of coupling parameter in this range has no deep sense). It should be noted that this deviation is likely a specific property of water (tendency to form clusters) rather than real specific interaction. The model was tested also on data for helium (not shown here), and absolutely identical deviation from solubility curve was obtained. In case of $\mathrm{CH}_{4}-\mathrm{CO}_{2}$ mixtures, the coupling parameter is slightly positive ($\sim 0-0.1$). However, this effect is comparable with experimental error, and coupling parameter was set to zero (see Fig 3ab).

The fugacity may be calculated with use of the following relations between the compressibility factor $\mathrm{Z}=\mathrm{P} / \mathrm{mRT}$ and thermodynamic potentials:

$$
\begin{align*}
& \mathrm{dA}^{\mathrm{ex}} / \mathrm{RT}=\{(\mathrm{Z}-1) / \mathrm{m}\} \mathrm{dm} \tag{37}\\
& \mathrm{dG}^{\mathrm{ex}} / \mathrm{RT}=(1 / \mathrm{m}) \mathrm{d}(\mathrm{Z}-1) \mathrm{m} \tag{38}\\
& \mathrm{G}^{\mathrm{ex}} / \mathrm{RT}=\mathrm{A}^{\mathrm{ex}} / \mathrm{RT}+\mathrm{md}\left(\mathrm{~A}^{\mathrm{ex}} / \mathrm{RT}\right) / \mathrm{dm}=\mathrm{A}^{\mathrm{ex}} / \mathrm{RT}+\mathrm{Z}-1 \tag{39}\\
& \mathrm{Z}=1+\mathrm{A}_{\mathrm{x}} \mathrm{~m}-\mathrm{B}_{\mathrm{x}} \mathrm{~m} /\left(1+\beta_{\mathrm{x}} \mathrm{~m}\right)-\mathrm{C}_{\mathrm{x}} \mathrm{~m}^{2}\left[1-\left\{1-\left(\mathrm{A}_{x} \mathrm{~m}\right)^{2}\right\} \exp \left(-\left(\mathrm{A}_{\mathrm{x}} \mathrm{~m}\right)^{2}\right)\right]+\mathrm{D}_{\mathrm{x}} \mathrm{~m}^{3} \tag{40}\\
& \mathrm{~A}^{\mathrm{ex}} / \mathrm{RT}=\mathrm{A}_{\mathrm{x}} \mathrm{~m}-\mathrm{B}_{\mathrm{x}} \ln \left(1+\beta_{\mathrm{x}} \mathrm{~m}\right) / \beta_{\mathrm{x}}-0.5 \mathrm{C}_{\mathrm{x}} \mathrm{~m}^{2}\left[1-\exp \left(-\left(\mathrm{A}_{x} m\right)^{2}\right)\right]+(1 / 3) \mathrm{D}_{\mathrm{x}} \mathrm{~m}^{3} \tag{41}
\end{align*}
$$

Here G^{ex} and A^{ex} are Gibbs and Helmholtz excess energies, m is total molarity of the mixture. For pure component, the fugacity f may be calculated from
$\mathrm{f}=\mathrm{RTm} \mathrm{Y}$
$Y=\exp \left(G^{\text {ex }} / R T\right)$
Here Y is "absolute activity coefficient". For the mixture, the absolute activity coefficient of component, Y_{i} is related with its mole fraction X_{i} :
$\ln \mathrm{Y}_{\mathrm{i}}=\mathrm{G}^{\mathrm{ex}} / \mathrm{RT}+\left(1-\mathrm{X}_{\mathrm{i}}\right)\left\{\mathrm{d}\left(\mathrm{A}^{\mathrm{ex}} / \mathrm{RT}\right) / \mathrm{d} \mathrm{X}_{\mathrm{i}}\right\}_{\mathrm{m}, \mathrm{X} / \mathrm{X}_{\mathrm{k}}=\text { const }}$
The Eq. (44) is convenient for numerical differentiation. However, the Eq (41) is relatively simple, and the absolute activity coefficient may be calculated analytically. The result is:

$$
\begin{align*}
& \ln Y_{i}=\left(\mathrm{A}_{\mathrm{i}}+\mathrm{A}_{\mathrm{x}}\right) \mathrm{m}-\left\{2 \mathrm { B } _ { \mathrm { i } } ^ { 0 . 5 } \left(\mathrm{B}_{\mathrm{x}}^{\mathrm{o}} 0.5\right.\right. \\
&\left.\left.-\sum_{i} \mathrm{k}_{\mathrm{ij}} \mathrm{~B}_{\mathrm{j}}^{0.5} \mathrm{X}_{\mathrm{j}}\right)-\mathrm{B}_{\mathrm{x}}\left(\beta_{i} / \beta_{\mathrm{x}}\right)\right\} \ln \left(1+\beta_{\mathrm{x}} \mathrm{~m}\right) / \beta_{\mathrm{x}}-\mathrm{B}_{\mathrm{x}}\left(\beta_{i} / \beta_{\mathrm{x}}\right) \mathrm{m} /\left(1+\beta_{\mathrm{x}} \mathrm{~m}\right) \tag{45}\\
&-1.5\left(\mathrm{C}_{\mathrm{i}} \mathrm{C}_{\mathrm{x}}^{2}\right)^{1 / 3} \mathrm{~m}^{2}\left[1-\exp \left\{-\left(\mathrm{A}_{\mathrm{x}} \mathrm{~m}\right)^{2}\right\}\right]-\mathrm{C}_{\mathrm{x}} \mathrm{~m}^{4} \mathrm{~A}_{\mathrm{i}} \mathrm{~A}_{\mathrm{x}} \exp \left\{-\left(\mathrm{A}_{\mathrm{x}} \mathrm{~m}\right)^{2}\right\}+(4 / 3)\left(\mathrm{D}_{\mathrm{i}} \mathrm{D}_{\mathrm{x}}^{3}\right)^{1 / 4} \mathrm{~m}^{3}
\end{align*}
$$

Here \sum_{j} is sum for components other than " i ". With use of this relation, the Henry constant (Fig. 4d) may be calculated from:
$\mathrm{K}_{\mathrm{H}}=\mathrm{f}_{2} / \mathrm{X}_{2}\left(\right.$ at $\left._{2} \rightarrow 0\right)=\mathrm{RTm}_{2} \mathrm{Y}_{2} /\left\{\mathrm{m}_{2} / \mathrm{m}\right\}=\mathrm{RTmY}_{2}$
Here $\mathrm{f}_{2}, \mathrm{x}_{2}, \mathrm{~m}_{2}, \mathrm{Y}_{2}$ - are fugacity, mole fraction, molarity, and absolute activity coefficient of dissolved gas, m is total molarity (here, molarity of pure water at saturation).

CONCLUDING REMARKS

In spite of strong non-ideality of fluid mixtures, the specific interaction of fluid components is weak and may be accounted for via adjustment of terms related to second virial coefficient. The contribution of specific interactions at high pressures is negligible. Compressibility of substance at very high pressures is consistent with $\mathrm{P} \sim \rho^{4}$, and thus, the repulsive branch of Lennard-Jones potential is close to $\sim \rho^{3}$, or $1 / r^{9}$.

REFERENCES

Abramson E.H. and Brown J.M. (2004) Equation of state of water based on speeds of sound measured in the diamond-anvil cell. Geochim. Cosmochim. Acta 68, 1827-1835.

Altunin V.V. (1975) Teplofizicheskie svoystva dvuokisi ugleroda (Thermophysical properties of carbon dioxide, in Russ). Izdatelstvo Standartov, Moscow.

Benedict M., Webb G.B. and Rubin L.C. (1940) An empirical equation for thermodynamic properties of light hydrocarbons and their mixtures. I. Methane, ethane, propane, and n-butane. J. Chem. Phys. 8, 334-345.

Benedict M., Webb G.B. and Rubin L.C. (1942) An empirical equation for thermodynamic properties of light hydrocarbons and their mixtures. II. Mixtures of methane, ethane, propane, and n-butane. J. Chem. Phys. 10, 747-758.

Blencoe J.G., Cole D.R., Horita J. and Moline G.R. (2001) Experimental geochemical studies relevant to carbon sequestration. In Proceedings of the First National Conference on Carbon Sequestration, U.S. National Energy Technology Laboratory, Washington.

Bridgman P.W. (1912) Thermodynamic properties of liquid water to $80^{\circ} \mathrm{C}$ and 12000 Kgm. Proc. Amer. Acad. Arts Sci. 48, 309-362.

Bridgman P.W. (1935) The pressure-Volume-Temperature relations of the liquid, and the phase diagram of heavy water. J. Chem. Phys. 3, 597-605.

Bridgman P.W. (1942) Freezing parameters and compressions of twenty-one substances to $50,000 \mathrm{~kg} / \mathrm{cm}^{2}$. Proc. Amer. Acad. Arts Sci. 74, 399-424.

Brodholt J.P. and Wood B.J. (1994) Measurements of the PVT properties of water to 25 kbars and $1600^{\circ} \mathrm{C}$ from synthetic fluid inclusions in corundum. Geochim. Cosmochim. Acta 58, 2143-2148.

Burnham C.W., Holloway J.R., and Davis N.F. (1969) The specific volume of water in the range 1000 to 8900 bars, 20° to 900° C. Am. J. Sci. 267-A, 70-95.

Celliers P.M., Collins G.W., Hicks D.G., Koenig M., Henry E., Benuzzi-Mounaix A., Batani D., Bradley D.K., Da Silva L.B., Wallace R.J., Moon S.J., Eggert J.H., Lee K.K.M., Benedetti L.R., Jeanloz R., Masclet I., Dague N., Marchet B., Rabec Le Gloahec M., Reverdin Ch., Pasley J., Willi O., Neelly D., and Danson C. (2004) Electronic conduction in shock-compressed water. Phys. Plasmas 11, L41-L44.

Fernández-Prini R., Alvares J.L., and Harvey A.H. (2003) Henry's constant and vapor-liquid distribution constants for gaseous solutes in $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{D}_{2} \mathrm{O}$ at high temperatures. J. Phys. Chem. Ref. Data 32, 903-916.

Frost D.J., and Wood B.J. (1997) Experimental measurements of the properties of $\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}_{2}$ mixtures at high pressures and temperatures. Geochim. Cosmochim. Acta 61, 33013309.

Giordano V.M., Datchi F., and Dewaele A. (2006) Melting curve and fluid equation of state of carbon dioxide at high pressure and high temperature. J. Chem. Phys. 125, 054504.

Grindley T. and Lind J.E. Jr. (1971) PVT properties of water and mercury. J. Chem. Phys. 54, 3983-3989.

Hilbert R., Tödheide K., and Franck E.U. (1981) PVT data for water in the ranges 20 to $600^{\circ} \mathrm{C}$ and 100 to 4000 bar. Ber. Bunsenges. Phys. Chem. 85, 636-643.

Jůza J., Kmoníček V., and Šifner, O. (1965) Measurements of the specific volume of carbon dioxide in the range of 700 to 4000 b and 50 to $475^{\circ} \mathrm{C}$. Physica 31, 1735-1744.

Kennedy G.C. (1954) Pressure-volume-temperature relations in CO_{2} at elevated temperatures and pressures. Am. J. Sci. 252, 225-241.

Kortbeek P.J. and Schouten J.A. (1990) Measurements of the compressibility and sound velocity in methane up to 1 GPa , revisited. Int. J. Thermophys. 11, 455-466.

Lysenga G.A., Ahrens T.J., Nellis W.J., and Mitchell A.C. (1982) The temperature of shock-compressed water. J. Chem. Phys. 76, 6282-6286.

Michels A. and Michels C. (1935) Isotherms of CO_{2} between 0 and $150^{\circ} \mathrm{C}$ and pressures from 16 to 250 atmospheres. Proc. Roy. Soc. A153, 201-214.

Michels A., Michels C., and Wouters N. (1935) Isotherms of CO_{2} between 70 and 3000 atmospheres (amagat densities between 200 and 600). Proc. Roy. Soc. A153, 214-224.

Morris E.C. (1984) Accurate measurements of the PVT properties of methane from -20 to $150^{\circ} \mathrm{C}$ and to 690 MPa . Int. J. Thermophys. 5, 281-290.

Nellis W.J., Mitchell A.C., Ree F.H., Ross M., Holmes N.C., Trainor R.J., and Erskine D.J. (1991) Equation of state of shock-compressed liquids: carbon dioxide and air. J. Chem. Phys. 95, 5268-5272.

Podurets M.A., Simakov G.V., Trunin R.F., Popov L.V., and Moiseev B.N. (1972) Compression of water by strong shock waves. Sov. Phys. JETP 35, 375-376.

Radousky H.B., Mitchell A.C., and Nellis W.J. (1990) Shock temperature measurements of planetary ices: $\mathrm{NH}_{3}, \mathrm{CH}_{4}$, and "synthetic Uranus". J. Chem. Phys. 93, 82358239.

Rice M.H. and Walsh J.M. (1957) Equation of state of water to 250 kilobars. J. Chem. Phys. 26, 824-830.

Rivkin S.L. and Aleksandrov A.A. (1984) Termodinamicheskie svoystva vodi i vodyanogo para. (Thermodynamic properties of water and steam, in Russ). Energoatomizdat, Moscow.

Robertson S.L. and Babb S.E.Jr. (1969) PVT properties of methane and propene to 10 kbar and $200^{\circ} \mathrm{C}$. J. Chem. Phys. 51, 1357-1361.

Seitz J.C., Blencoe J.G., and Bodnar R.J. (1996) Volumetric properties for $\{(1-$ $\left.\left.\mathrm{x}) \mathrm{CO}_{2}+\mathrm{xCH}_{4}\right\},\{1-\mathrm{x}) \mathrm{CO}_{2}+\mathrm{xN}_{2}\right\}$, and $\left\{(1-\mathrm{x}) \mathrm{CH}_{4}+\mathrm{xN}_{2}\right\}$ at the pressures (9.94, 19.94, 29.94, 39.94, 59.93, 79.93, and 99.93) MPa and temperatures (323.15, 373.15, 473.15, and 573.15) K. J. Chem. Thermodyn. 28, 521-538.

Seitz J.C. and Blencoe J.G. (1999) The $\mathrm{CO}_{2}-\mathrm{H}_{2} \mathrm{O}$ system. I. Experimental determination of volumetric properties at $400^{\circ} \mathrm{C}$. Geochim. Cosmochim. Acta 63, 1559-1569.

Setzmann U. and Wagner W. (1991) A new equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625 K at pressures up to 1000 MPa. J. Phys. Chem. Ref. Data 20, 1061-1155.

Shmonov V.M. and Shmulovich K.I. (1974) Molar volumes and equations of state for CO_{2} between 100-1000 ${ }^{\circ} \mathrm{C}$ and 2000-10000 bars. Dokl. Akad. Nauk SSSR 217, 205-209.

Shmonov V.M., Sadus R.J., and Franck E.U. (1993) High-pressure phase-equilibria and supercritical PVT data of the binary water plus methane mixture to 723 K and 200 MPa . J. Phys. Chem. 97, 9054-9059.

Shmulovich K.I., Shmonov V.M., Mazur V.A., and Kalinichev A.G. (1980) P-V-T and activity concentration relations in the $\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}_{2}$ systhem (homogeneous solutions). Geochem. Int. 17, 123-139.

Sretenskaya N.G., Zakirov I.V., Shmonov V.M., and Shmulovich K.I. (1986) Vodosoderzhaschie fluidnie sistemi. In Experiment v reshenii aktual'nih zadach geologii (Water-bearing fluid systems. In Experiment in solution of actual problems of geology, in Russ). Nauka, Moscow.

Sterner S.M., and Bodnar R.J. (1991) Synthetic fluid inclusions. X. Experimental determination of the P-V-T-X properties in the $\mathrm{CO}_{2}-\mathrm{H}_{2} \mathrm{O}$ system to 6 kb and $700^{\circ} \mathrm{C}$. Amer. J. Sci. 291, 1-54.

Tsiklis D.S., Linshits L.R., and Tsimmerman S.S. (1971a) Molar volumes and thermodynamic properties of methane at high pressures and temperatures. Dokl. Akad. Nauk SSSR 198, 384-386.

Tsiklis D.S., Linshits L.R., and Tsimmerman S.S. (1971b) Measurement and calculation of molar volumes of carbon dioxide at high pressure and temperature. Teplofizicheskie Svoistva Veschestv i Materialov 3, 130-136

Van der Waals J.D. (1881) Die Kontinuität des gasförmigen und flüssigen zustandes. Johann Ambrosium Barth Verlag, Leipzig.

Von Köster H. and Franck E.U. (1969) Das spezifische volumen des wassers bei hohen drucken bis $600^{\circ} \mathrm{C}$ und 10 kbar. Ber. Bunsenges. Phys. Chem. 73, 716-722.

Von Maier S. and Franck E.U. (1966) Die Dichte des Wassers von 200 bis $850^{\circ} \mathrm{C}$ und von 1000 bis 6000 bar. Ber. Bunsenges. Phys. Chem. 70, 639-645.

Vukalovich M.P., Altunin V.V., and Timoshenko N.I. (1962) Experimental study of the specific volume of carbon dioxide at temperatures $200-750^{\circ} \mathrm{C}$ and pressures up to 600 $\mathrm{kg} / \mathrm{cm}^{2}$. Teploenergetika 5, 56-62.

Vukalovich M.P., Altunin V.V., and Timoshenko N.I. (1963) Experimental determination of the specific volume of carbon dioxide at temperatures $40-150^{\circ} \mathrm{C}$ and pressures up to $600 \mathrm{~kg} / \mathrm{cm}^{2}$. Teploenergetika 10, 85-88.

Wiryana S., Slutsky L.J., and Brown J.M. (1998) The equation of state of water to $200^{\circ} \mathrm{C}$ and 3.5 GPa : model potentials and the experimental pressure scale. Earth Planetary Sci. Lett. 163, 123-130.

Withers A.C., Kohn S.C., Brooker R.A., and Wood B.J. (2000) A new method for determining the $\mathrm{P}-\mathrm{V}-\mathrm{T}$ properties of high-density $\mathrm{H}_{2} \mathrm{O}$ using NMR: results at 1.4-4.0 GPa and $700-1100^{\circ} \mathrm{C}$. Geochim. Cosmochim. Acta 64, 1051-1057.

