
Basis, The Journal of Basic Science 1 (2013) 13-20 

 13 

APPROXIMATE CHARGE-POTENTIAL RELATIONSHIP  

FOR SPHERICAL PARTICLE IN ARBITRARY SALT MEDIUM 

 

Sergey Pivovarov 

Institute of Experimental Mineralogy, Russian Academy of Sciences 

142432 Chernogolovka, Moscow district, Russia 

E-mail: serg@iem.ac.ru 

 

Published online 05.03.2013 

 

 

 

ABSTRACT 

 

The paper presents simple and accurate approximation of charge-potential relationship for 

spherical particle in electrolyte solution, valid for arbitrary salt medium and applicable for 

particles and ions. For a particle in arbitrary mixture of 1:1, 1:2, 2:1, and 2:2 electrolytes, 

the analytical expression was deduced. Within the range covered by numerical studies, the 

maximum error in surface charge is 0.75 % (for 1:1, 1:2, 1:3, 2:1, and 3:1 electrolytes). 

This charge-potential relationship was applied to modeling of acid-base properties of 

oxides. It was found that the planar approach is not applicable for ferrihydrite particles. 

 

 

INTRODUCTION 

 

 If the curvature of the interface is negligible, the charge-potential relation is defined 

by Gouy-Chapman equation (below all numerical values of constant factors are valid for 

25
o
C and aqueous medium): 

 

σ, C m2 = (2000RTε0ε)0.5I0.5Q = 0.0587 × I0.5Q , or    (1) 

σ, μeq m2 = 0.608 × I0.5Q         (1a) 

Q = sgn yd × {1/I0.5} ×  { ci(exp −ziyd − 1)}0.5     (2) 

yd =  Fφd RT           (3) 

I =  0.5 ×  zi
2 ci           (4) 

 

Here φd is potential in the head of diffuse layer, yd is scaled potential, sgn(yd) is sign of yd, I 

is molar ionic strength, ci is molar concentration of ion in the bulk solution (moles per 

dm
3
), zi is charge of ion, F is Faraday constant (96484.6 C/mol), R is gas constant (8.3144 

J×mol
-1

×K
-1

), T is absolute temperature, εo is dielectric constant of free space 

(8.8541878×10
-12

 C×V
-1

×m
-1

), ε is relative dielectric constant of medium (78.47 for water 

at 25
o
C). 

 The Eq (2) may be rearranged (Pivovarov, 2009, 2010) as 

 

Q = (Ieff I )0.5 × (Pd
0.5 −  1/Pd

0.5)         (5) 

 

Pd = exp Fφd RT  =  exp yd          (6) 

 

Ieff = 0.5 ×   A− +  An2−  2 + 2Pd + ⋯ Ann−  n + 2 n − 1 Pd + ⋯ 2Pd
n−1  +   

  M+ +  Me2+  2 +
2

Pd
 + ⋯ Men+  n +

2 n−1 

Pd
+ ⋯

2

Pd
n−1       (7) 
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Here [A
–
], [An

2–
], and [An

n–
] are molar concentrations of mono-, bi- and n-valent anions, 

[M
+
], [Me

2+
], and [Me

n+
] are molar concentrations of mono-, bi- and n-valent cations. 

 For symmetric z:z electrolytes, the Eq. 2 is reduced to 

 

Q =  2 z  sh zyd 2           (8) 

 

Here sh(x) = 0.5{exp(x)-exp(-x)} is hyperbolic sinus. 

 The Gouy-Chapman equation gives the exact charge-potential relation for flat 

interface, and may be applied if the curvature of interface is negligible. The accuracy of 

planar approach is 1 % at scaled radius of particle κa = 100, and 10 % at scaled radius of 

particle κa = 10, where a is radius of particle and κ is inversed Debye length: 

 

κ =  2000F2/RTε0ε 
0.5 × I0.5,   or       (9) 

κ−1, Å = 3.04 I0.5          (9a) 

 

 The exact analytical charge-potential relation for spherical particle is not known. At 

low surface potentials (|yd| <<1), the charge-potential relationship is defined by Debye-

Hückel equation: 

 

σ, μeq m2 ≈ 0.608 × I0.5  yd +
yd

κa
 = 0.608 × I0.5 × yd  +  1.85 ×

yd

 a,   Å 
   (10) 

 

Here [a, Å] is radius of particle in angstroms. This is exact asymptotic relation at yd → 0 

and any size of a particle. At I = 0, the Eq. (10) is exact relation (Coulomb’s law). 

 As it was guessed by Loeb et al. (1961) on basis of their numerical calculations, the 

charge-potential relationship for symmetric z:z electrolyte at κa → ∞ approaches to (see 

Eq. 4.50 in Loeb et al., 1961): 

 

σ, μeq m2 ≈ 0.608 × c0.5  2sh(zyd /2)  +  
4

κa
 th(zyd /4)      (11) 

 

Here th(x) = {exp(x)-exp(-x)}/{exp(x)+exp(-x)} is hyperbolic tangent. The uncertainty of 

the Loeb-Overbeek-Wiersema equation (Eq. 11) is 1 % at κa ~ 1.7 and 10 % at κa ~ 0.27. 

At smaller size of particles, uncertainty increases to infinity. 

 As it was shown by Ohshima et al. (1982), Eq. (11) is exact asymptotic relationship 

for κa → ∞. Based on perturbation analysis, the second-order charge-potential relationship 

was also deduced (see Eq. 24 in Ohshima et al., 1982). For symmetric z:z electrolytes: 

 

σ, μeq m2 ≈ 0.608 × c0.5  4sh2  
zyd

2
 +  

32

κa
 sh2  

zyd

4
 +  

32

 κa 2 ln  ch  
zyd

4
   

0.5

   

           (12) 

 

Here ch(x) = 0.5{exp(x)+exp(-x)} is hyperbolic cosine. Maximum error of this relationship 

is 1 % at κa ~ 0.32 and 10 % at κa ~ 0.035. At smaller size of particles, uncertainty 

increases to infinity. 

 The Loeb-Overbeek-Wiersema equation (Eq. 11) was extended to arbitrary salt 

medium by Ohshima (1995): 

 

σ, μeq m2 ≈ 0.608 × I0.5  Q +  
2

κa
  U Q          (13) 

U =  Qdyd
yd

0
          (14) 
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For symmetric z:z electrolyte, 

 

U =  
8

z2 sh2  
zy d

4
 =   

4

z2  ch  
zy d

2
 − 1        (15) 

 

The Ohshima equation (Eqs. 13, 14) is also an exact asymptotic relationship in the limit κa 

→ ∞. The accuracy of the Ohshima equation for the arbitrary salt mixtures is expected to 

be the same as that of the Loeb-Overbeek-Wiersema equation for symmetric z:z 

electrolytes. The Eq. (12) may also be extended to arbitrary salt mixture (see Eq. 26 in 

Ohshima, 1995): 

 

σ, μeq m2 ≈ 0.608 × I0.5  Q2  +  
4

κa
 U +  

4

 κa 2   U Q  dyd
yd

0
 

0.5

   (16) 

 

 The integral in Eq. (14) may be solved numerically. However, this is not too 

convenient for practical calculations. At any given conditions, the calculation of the ionic 

sorption via simultaneous solution of mass balance and mass action law equations requires 

~ 100-1000 iteration steps. Accurate numerical integration of Eq. (14) at each iteration step 

leads to ~ 1000-fold delay. Thus, the analytical solution of Eq. (14) gives significant 

advantage. Unfortunately, the analytical solution for the Eq. (14) is known solely for the 

(M
+
, Me

2+
)A

-
 electrolyte (and thus for M

+
(A

-
, An

2-
) electrolyte; see Eq. 34 in Ohshima et 

al., 1982).  

 The Loeb-Overbeek-Wiersema equation (Eq. 11) is well applicable for very fine 

crystalline particles, whereas the Eq. (12) is extended down to the range of 

macromolecules. However, there is no accurate approximation applicable down to 

molecular size. 

 The aim of present study is to deduce the analytical solution of the Ohshima 

equation (Eqs. 13, 14) for (Me
+
, Me

2+
)(A

-
, An

2-
) electrolyte (most important case for 

majority of applications) and find close approximation for charge-potential relationship, 

applicable down to molecular range. The present paper is faced to surface complexation 

studies, and the application of the theory of spherical diffuse layer to surface reactivity is 

considered in details. 

 

 

THEORY 

 

 The Eqs. (5) is more convenient for integration than Eq. (2). For the (M
+
, Me

2+
)(A

-
, 

An
2-

) electrolyte, the Eqs. (7) is 

 

Ieff = N +  An2− Pd +  Me2+ /Pd          (17) 

 

Here N = [M
+
] + 2[Me

2+
] = [A

-
] + 2[An

2-
] is normality of solution. With use of Eqs. (5, 

17), the Eq. (14) may be integrated analytically. The result is: 

 

U = 2 Ieff I  0.5 ×  Pd
0.5 + 1 Pd

0.5  −  4 + UMe + UAn       (18) 

 

The function UMe is zero at [Me
2+

] = 0; at [Me
2+

]>0, it is defined by: 

 

UMe = 1 −  
Ieff

I×Pd
 

0.5

+ 0.5  
[M+]

 I×[Me 2+] 0.5
 ln  

2 Ieff  Me 2+ Pd  
0.5

+2  Me 2+ Pd  +N

2 I Me 2+  0.5+2[Me 2+]+N
   (19) 
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Similarly, UAn is zero at [An
2-

] = 0; at [An
2+

]>0, this function is defined by: 

 

UAn = 1 −  
Ieff Pd

I
 

0.5

+ 0.5  
[A−]

 I×[An 2−] 0.5 ln  
2 Ieff  An 2− Pd  

0.5
+2[An 2−]Pd +N

2 I An 2−  0.5+2[An 2−]+N
    (20) 

 

 In general case, charge-potential relationship for sphere may be rearranged on a 

manner of Debye-Hückel equation (see Eq. 10): 

 

σ, μeq m2 = 0.608 × I0.5 Q + Φ κa  = 0.608 × I0.5Q + 1.85 Φ  a, Å     (21) 

 

Here [a, Å] is radius of particle in angstroms, and Φ is some unknown function.  

The function Φ for 1:1 electrolyte is shown in Fig. 1. At yd → 0 (and at any κa), as 

well as at κa → 0 (and at any definite yd), this function approaches to yd. At κa → ∞ (and 

any yd), as well as at yd → ∞ (and any definite κa), the function Φ approaches to 4th(yd/4) 

= 2U/Q. As may be seen, the analysis of charge-potential relationship in terms of the 

function Φ is more or less simple. The following approximation was found most accurate: 

 

Φ ≈ sng(yd) ×   bκaQ 2 + 4bκaU + yd
2 

0.5
− bκaQ      (22) 

 

Here b = 5/3 is dimensionless fitting parameter. Combined with Eq. (21), it gives the 

following relationship: 

 

σ, μeq m2 ≈ 0.608 × I0.5  1 − b Q + sng(yd ) ×   bQ 2 +  4b κa  U +  yd κa  2 0.5  
           (23) 

 

Within the range covered by numerical 

studies (Loeb et al., 1961, Zhou and 

Zhang, 2012; 1:1 electrolyte: κa = 

0.009-10, Fφd/RT = 0-9.5 and κa = 0.1-

20, Fφd/RT = 0-16; 2:1 and 3:1 

electrolytes: κa = 0.009-10, Fφd/RT = 0-

9.5; 1:2 electrolyte: (4/3)
0.5

κa = 0.1-20, 

Fφd/RT = 0-4; 1:3 electrolyte: 1.5
0.5

κa = 

0.1-20, Fφd/RT = 0-8/3), maximum 

uncertainty in surface charge is 0.75 %. 

Similar accuracy is expected for 

electrolyte mixtures. 

 

 

 

 

 

 

 

 

  

 

 

 

 

Fig. 1 The function Φ for spherical particle in 

1:1 electrolyte. Symbols: numerical 

calculations from Loeb et al (1961, solid 

circles) and Zhou and Zhang (2012, open 

circles). Dashed curves: Eq. (22) 
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COMBINATION WITH STERN MODEL 

 

In accordance with the Stern model, the head of diffuse layer is separated from the 

surface by some distance λ (familiarly, it is radius of counter ion), and all above relations 

are valid for imaginary particle with radius a + λ.  

Thus the charge of diffuse layer, related to the surface area at the head of diffuse 

layer is defined by:  

 

σd , μeq m2 = −0.608 × I0.5 Q + Φ/κ a + λ         (24) 

Φ ≈ sng(yd) ×   bκ a + λ Q 2 + 4bκ a + λ  U + yd
2 

0.5
− bκ a + λ Q   (25) 

 

The equations for Q and U stand the same (Eqs. 2 or 5 or 8 for Q, and 14 or 15 or 18-20 for 

U). As above, b = 5/3. It should be noted that the function U is always positive (or zero at 

yd = 0). However, at the calculations of ionic sorption, the model bulk solution often 

deviates from electrical neutrality (e.g., “adsorption of 1 mM Ca from 0.1 M NaCl”), and 

small errors introduced by this simplification are neglected. At the deviation of the bulk 

solution from electrical neutrality (even in terms of last digits), the function U may have 

small negative values. To avoid the failure of calculations (error: square root of negative 

number), this function should be taken by modulus. 

 The charge of particle (in Coulombs) is equal by modulus to total charge of diffuse 

layer. In terms of surface charge, this balance equation may be expressed as 

 

σs = −  1 + λ a  2σd          (26) 

 

 In accordance with the Coulomb’s law, the surface potential is related with potential 

at the head of diffuse layer via relation 

 

φs = φd +  σs ε0ε  ×  λa  λ + a   = φd + σs C       (27) 

 

Here C (C×m
-2

×V
-1

 = F/m
2
) is electric capacitance, related to the surface of particle. 

Consequently, the factor Ps = exp(Fφs/RT) is related with Pd as 

 

Ps = Pdexp  Fσs RTε0ε  ×  λa  λ + a     , or      (28) 

Ps = Pdexp  1 1.85  ×  σs , μeq/m2 ×  λ, Å × a  a + λ        (28a) 

 

 If the surface charge is generated by dissociation of some acidic surface site, it may 

be simulated by reaction: 

 

SOH0 +Ps ⟺ SO− + H+          (29) 

Ka
0 = 10−pH ×  SO− /  SOH0 × Ps           (30) 

 

Traditionally, the factor Ps
z
 = exp(zFφs/RT) is considered as an “activity coefficient” of 

surface species with charge z (in present case, SO
-
), and this leads to a willing to follow a 

common way for calculation of activity coefficients (speciation → activity coefficients → 

speciation → etc). However, this algorithm is not too convenient, taking into account for 

huge magnitude of this variable (from zero to infinity). From the other hand, as may be 

seen from Eq. (29-30), the factor Ps acts as a component of reaction, and thus, it may be 

calculated on a manner of activity of some component, together with activities of all other 

species, i.e. within a single iteration cycle. To apply this algorithm, it is necessary to 

introduce the charge balance equation (if to follow the common way, it is satisfied 
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automatically). For this purpose, let us split the total charge of diffuse layer (Eq. 24) into 

positive and negative branches: 

 

σd = θM - θA          (31) 

 

It should be noted that θM and θA are operational variables. The values θM and θA should be 

positive, and they should satisfy the Eq. (31). Variety of functions complies with these 

conditions. The convenient variant is a following: 

 

θM, μeq/m2 =  0.608{Ieff/Pd}0.5 + {1.85/[a+λ, Å  ×  Φ2/4 + 1)0.5 – Φ/2          (32) 

θA, μeq/m2 =  0.608{Ieff×Pd}0.5 + {1.85/[a+λ, Å  ×  Φ2/4 + 1)0.5 + Φ/2       (33) 

 

Thus, the charge balance equation (see Eq. 26) may be rearranged as 

 

[SO-] + (1+λ/a 2×θA = (1+λ/a 2×θM         (34) 

 

Because θM and θA are positive variables, Eq (34) may be used similarly to any other 

balance equation. 

 

 

APPLICATION 

 

 In Fig. 2, the charge of silica surface (data from Bolt, 1957) is shown in comparison 

with model calculations. The values of pKa
o
 = 7.85, and radius of counter ion λ = 1.5 Å 

were adjusted, the site density was fixed at TS = 7.56 μmol/m
2
 (based on surface structure 

of tridymite, see Iler, 1979). The radius of particles a = 76 Å was calculated from:  

 

a, Å = 30000× ρ, g/cm3]-1× s, m2/g]-1      (35) 

 

Here [ρ, g/cm
3
] is density (assuming ρ 

~ 2.2 g/cm
3
, see Iler, 1979), and [s, 

m
2
/g] is specific surface area (s = 180 

m
2
/g, as measured by Bolt, 1957). For 

the comparison, the calculations with 

use of planar model are shown (the 

same values of model parameters were 

applied except that the radius of 

particle was changed to 1 m, whereas 

the “radius of counter ion” was 

changed to λ = 1.5×76/77.5 = 1.47 Å, 

in order to retain the same value of 

specific capacitance, see Eq. 27). All 

curves correspond to a single spherical 

particle in the infinite volume of 

solution, and the overlap of diffuse 

layers is neglected. The effect of 

dissolution of silica is significant at 

pH>9.5, and the deviation of model 

curves from data at pH>9.5 (except the 

lowest ionic strength) is close to that expected from general chemistry of silica (solubility 

of amorphous silica ~ 1.7-2.5 mM, and dissociation constant of H2SiO3, pKa
o
 ~ 9.8, see 

Fig. 2 Surface charge of silica in NaCl 

solutions. Data from Bolt (1957). Solid curves: 

Stern model with spherical diffuse layer. 

Dashed curves: Stern model with planar 

diffuse layer 
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Iler, 1979). As may be seen, even for relatively large particles with radius 76 Å, the effect 

of curvature is not negligible, and the neglecting of curvature leads to overestimation of 

surface acidity constant by 0.1-0.3 log units. 

 In Fig. 3, the surface charge of ferrihydrite is shown (data from Pivovarov, 2009). 

The solid curves were calculated with use of the same model as for silica. To simulate the 

positive branch of the surface charge, it was assumed that the lattice of ferrihydrite has 

positive permanent charge [LCh
+
] = 0.5TS. Thus the surface charge is defined as  

 

σs = [LCh+] – [SO-] .        (36) 

  

Consequently, the charge balance equation (see Eqs. 26 and 34) is defined by 

 

[S-] +  1+λ/a 2×θA = [LCh+  +  1+λ/a 2×θM     (37) 

 

Note that this model is numerically 

equivalent to 1-pKa model (SOH
0.5+

  

SO
0.5-

; see Van Riemsdijk et al., 1986), 

or model with reaction SOH2
+
  

SOH
o
, if permanent lattice charge is 

equal to minus 0.5TS.  

 The values pKa = 8.05, λ = 2.4 

Å, a = 23 Å, and TS = 10 μmol/m
2
 

were adjusted. The equimolar mixture 

of FeOOH (as goethite) and H2O has 

density (89+18)/(89/4.3 + 18/1) ~ 2.77 

g/cm
3
. This value was considered as an 

estimate for hypothetical solid 

“Fe(OH)3”, and the specific surface 

area of ferrihydrite, 471 m
2
/g Fe(OH)3 

(equivalent to 566 m
2
/g FeOOH) was 

calculated from Eq. (35).  

 The dashed curves in Fig. 3 

were calculated with use of planar 

model of diffuse layer (radius of 

particle was changed to 1 m, and “radius of counter ion” λ was changed to 2×(23/25.4) = 

2.17 Å, in order to keep the same value of electrical capacitance as for spherical model, see 

Eq. 27). As may be seen from comparison of model curves, for particles with radius 23 Å, 

the effect of curvature is large, and can not be simply neglected. 

   The algorithm of calculations at given pH, [M
+
], [Me

2+
], [A

-
], [An

2-
], Ka

o
, particle 

size a (Å), radius of counter ion λ (Å), site density TS (μmol/m
2
), and positive lattice 

charge [LCh
+
], μeq/m

2
: 

 

Calculate: I = 0.5{[M
+
] + 4[Me

2+
] + [A

-
] + 4[An

2-
]}; N = [M

+
] + 2[Me

2+
]; κ, Å

-1
 = I

0.5
/3.04  

Define: Ps = 1, Pd = 1, B = 0, UMe = 0, UAn = 0 

Cycle. Calculate:   

  Pd = Ps×exp(-B); yd = ln(Pd); Ieff = (see Eq. 17); Q = (see Eq. 5) 

  If [Me
2+

] > 0, UMe = (see Eq. 19) 

  If [An
2+

] > 0, UAn = (see Eq. 20) 

  U = (see Eq. 18) 

  Φ = (see Eq. 20); θM = (see Eq. 32); θA = (see Eq. 33) 

  [SO
-
] = Ka

o
×TS×Ps×10

pH
/(1 + Ka

o
×Ps×10

pH
) 

  PLUS = [LCh
+
] + (1 + λ/a)

2
×θM 

4 5 6 7 8 9 10

pH

-0.1

0.0
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0.2

  
 ,
  

 e
q
/m

o
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e
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Fe 0.025 M
t = 25  Co

Fig. 3 Surface charge of ferrihydrite in NaCl 

+ 0.01 M NaNO3 solutions. Data from 

Pivovarov (2009). Solid curves: Stern model 

with spherical diffuse layer. Dashed curves: 

Stern model with planar diffuse layer 
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  MINUS = [SO
-
] + (1 + λ/a)

2
×θA 

  Ps1 = Ps×PLUS/MINUS 

  Ps = (Ps1×Ps)
0.5

 

Compare Ps and Ps1; if necessary, repeat cycle 

Calculate  B1 = {1/1.85}×{λa/(λ+a)}×{[LCh
+
] – [SO

-
]} 

  B = {B1+ 3×B}/4 

Compare B1 and B; if necessary, repeat cycle 

Calculate σs , μeq/m
2
 = [LCh

+
] – [SO

-
] 

 

 It should be noted that the constant capacitance term (see Eqs. 27-28) cannot be 

solved within the single iteration, and this part of the surface potential should be calculated 

with use of double iteration cycle (as above). 

 

 

CONCLUDING REMARKS 

 

 At the specific surface area more than ~ 200 m
2
/g, the planar approach becomes 

inapplicable. However, the correction of the diffuse double layer model on curvature of the 

interface is not too complex. In arbitrary (M
+
, Me

2+
)(A

-
, An

2-
) salt medium, and for 

particles of arbitrary size, it may be performed analytically.  

 

 

REFERENCES 

 

Bolt GH (1957) Determination of the charge density of silica sols. J Phys Chem 61: 

1166-1169. 

Loeb AL, Overbeek JThG, Wiersema PH (1961) The electrical double layer around 

a spherical colloidal particle. MIT Press, Cambridge. 

Iler RK (1979) The chemistry of silica, Wiley, New York. 

Ohshima H, Healy TW, White LR (1982) Accurate analytic expressions for the 

surface charge density/surface potential relationship and double-layer potential distribution 

for a spherical colloidal particle. J Colloid Interface Sci 90: 17-26. 

Ohshima H (1995) Surface charge density/surface potential relationship for a 

spherical colloidal particle in a solution of general electrolytes. J Colloid Interface Sci 171: 

525-527. 

Pivovarov S (2009) Diffuse sorption modeling. J Colloid Interface Sci 332: 54-59. 

Pivovarov S (2010) Diffuse sorption modeling: ionic adsorption on silica. J Colloid 

Interface Sci 352: 158-162. 

Van Riemsdijk WH, Bolt GH, Koopal LK, Blaakmeer J (1986) Electrolyte 

adsorption on heterogeneous surfaces: adsorption models. J Colloid Interface Sci 109: 219-

228. 

Zhou S, Zhang G (2012) Approximate analytic solution of the non-linear Poisson-

Boltzmann equation for spherical colloidal particle immersed in a general electrolyte 

solution. Colloid Polym Sci 290: 1511-1526. 


