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ABSTRACT 

 

Article presents accurate charge-potential relationship for cylindrical particle in arbitrary 

salt medium, applicable down to molecular size. For the case of arbitrary mixture of 1:1, 

2:1, 1:2, and 2:2 electrolytes, this relationship is given by analytical expression. The 

application of the cylindrical diffuse layer model to calculation of chemical equilibria in 

polyelectrolytes is considered in details. 

 

 

INTRODUCTION 

 

 If the curvature of the solid-water interface is negligible, the charge-potential 

relation is defined by Gouy-Chapman equation (below all numerical values of constant 

factors are valid for 25
o
C and aqueous medium): 

  

σ, C/m
2
 = (2000RTεoε)

0.5
×I

0.5
×Q = 0.0587×I

0.5
×Q   , or    (1) 

 

σ, μeq/m
2
 = 0.608×I

0.5
×Q           (1a) 

 

Q = {1/I
0.5

}× sgn(yd)×{∑ci[exp(-ziyd) -1]}
0.5

        (2) 

 

yd = Fφd/RT             (3) 

 

I = 0.5×Σzi
2
ci          (4) 

 

Here φd is potential in the head of diffuse layer, yd is scaled potential, sgn(yd) is sign of yd, I 

is molar ionic strength, ci is molar concentration of ion in the bulk solution (moles per 

dm
3
), zi is charge of ion, F is Faraday constant (96484.6 C/mol), R is gas constant (8.3144 

J×mol
-1

×K
-1

), T is absolute temperature, εo is dielectric constant of free space 

(8.8541878×10
-12

 C×V
-1

×m
-1

), ε is relative dielectric constant of medium (78.47 for water 

at 25
o
C). 

 The Eq (2) may be rearranged as (Pivovarov 2010): 

 

Q = {Ieff/I}
0.5

×(Pd
0.5

 – 1/Pd
0.5

)        (5) 

 

Pd = exp(Fφd/RT) = exp(yd)        (6) 

 

Ieff = 0.5{[A
-
] + [An

2-
](2 + 2Pd) +… [An

n-
](n + 2(n-1)Pd +…2Pd

n-1
) +  

 + [M
+
] + [Me

2+
](2 + 2/Pd) +… [Me

n+
](n + 2(n-1)/Pd +…2/Pd

n-1
)}  (7) 
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Here [A
-
], [An

2-
], and [An

n-
] are molar concentrations of mono-, bi- and n-valent anions, 

[M
+
], [Me

2+
], and [Me

n+
] are molar concentrations of mono-, bi- and n-valent cations. 

 For symmetric z:z electrolytes, the Eq. 2 is reduced to 

 

Q = (2/z)sh(zyd/2)         (8) 

 

Here sh(x) = 0.5{exp(x)-exp(-x)} is hyperbolic sinus. 

 The Gouy-Chapman equation is exact charge-potential relationship for flat 

interface, and it may be applied if the curvature of interface is negligible. For cylindrical 

particles, accuracy of planar approach is 1 % at κa = 50, and 10 % at κa = 5, where a is 

radius of cylinder and κ is inversed Debye length: 

 

κ = (2000F
2
I/RTεoε)

0.5
  or        (9) 

 

κ
-1

, Å = 3.04/I
0.5

         (9a) 

 

 The exact analytical charge-potential relation for infinite cylinder is not known. For 

low values of surface potential, it may be derived analytically from the Poisson-Boltzmann 

equation: 

 

σ, C/m
2
 = εoεφdκ/β  , or        (10) 

 

σ, μeq/m
2
 = 0.608×I

0.5
×yd/β        (10a) 

 

Here β = K0(κa)/K1(κa), where K0(κa) and K1(κa) are modified Bessel functions of second 

kind, of zero and first order. 

  As may be found from formula for electrical capacity of cylindrical condenser, β ~ 

κa×ln(1+1/κa) (maximum error 2.7 %). More accurate approximation is (maximum error 

0.002 %): 

 

β ≈ κa×ln(1+1/κa)} + {ln(2) - C}×κa/(1 + 6.023(κa)
0.94

 + 8.48(κa)
2
 + 2.78(κa)

3
) (11) 

 

Here C = 0.5772156649… is Euler constant.   

 At high values of surface potential, the Eq. (10) is not applicable. However, based 

on perturbation analysis of Poisson-Bolmzmann equation, variety of first-order 

relationships may be deduced. One was deduced by Ohshima et al. (1982, Eq. A14). For 

symmetric z:z electrolyte it is: 

 

σ, μeq/m
2
 = 0.608×I

0.5
×(2/z)sh{zyd/2}[1+(β

-2
 -1)/ch

2
{zyd/4}]

0.5
   (12) 

 

Here ch(x) = 0.5{exp(x)+exp(-x)} is hyperbolic cosine. The uncertainty of this relation is 1 

% at κa = 0.5, and 10 % at κa = 0.1. At smaller size of cylinder, error increases to infinity.  

 At κa → ∞, the factor (β
-2

 -1) approaches to 1/κa, and Eq. 12 may be reduced to: 

 

σ, μeq/m
2
 = 0.608×I

0.5
×[(2/z)sh{zyd/2}+ 0.5×{1/κa}×(4/z)th{zyd/4}]  (13) 

 

Here th(x) = {exp(x)-exp(-x)}/{exp(x)+exp(-x)} is hyperbolic tangent. The uncertainty of 

Eq. (13) is 1 % at κa = 3.3, and 10 % at κa = 1; at smaller particle size, error increases to 

infinity. Both Eqs (12) and (13) are asymptotically exact at κa → ∞. Note also that the last 
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term in Eq. (13) is simply 2 times smaller than that in Loeb-Overbeek-Wiersema equation 

(see Eq. 4.50 in Loeb et al. 1961) for sphere with radius a. In other words, the charge-

potential relationship coincides for large cylinder with radius a, and for sphere with radius 

2a. 

 Similarly to Loeb-Overbeek-Wiersema equation for sphere, the Eq. (13) may be 

extended to arbitrary salt medium (see Eq. 20 in Ohshima, 1995, but multiply the second 

term by the factor 0.5): 

 

σ, μeq/m
2
 = 0.608×I

0.5
×{Q + 0.5×{1/κa}×(2U/Q)}     (14) 

 

U =  Qdyd
yd

0
          (15) 

 

Here Q is that defined by Eqs. (2), or (5), or (8). For the symmetric z:z electrolytes, the 

function U is  

 

U = (4/z
2
) ×{ch(zyd/2)-1}= (8/z

2
)×sh

2
(zyd/4)  , and    (16) 

 

2U/Q = (4/z)th(zyd/4)         (17) 

 

The function U may be also solved analytically for arbitrary (M
+
, Me

2+
)(A

-
, An

2-
) salt 

mixture (Pivovarov, 2013): 

 

U = 2{Ieff/I}
0.5

(Pd
0.5

 + 1/Pd
0.5

) – 4 + UMe + UAn     (18) 

 

Ieff = N + [An
2-

]Pd + [Me
2+

]/Pd        (19) 

 

Here N = [M
+
] + 2[Me

2+
] = [A

-
] + 2[An

2-
] is total normality of solution, and Pd is that 

defined by Eq. (6). The function UMe is zero at [Me
2+

] = 0; at [Me
2+

]>0, it is defined by: 

 

UMe = 1 −  
Ieff

I×Pd
 

0.5

+ 0.5  
[M+]

 I×[Me 2+] 0.5 ln  
2 Ieff  Me 2+ Pd  

0.5
+2  Me 2+ Pd  +N

2 I Me 2+  0.5+2[Me 2+]+N
   (20) 

 

Similarly, UAn is zero at [An
2-

] = 0; at [An
2+

]>0, this function is defined by: 

 

UAn = 1 −  
Ieff Pd

I
 

0.5

+ 0.5  
[A−]

 I×[An 2−] 0.5 ln  
2 Ieff  An 2− Pd  

0.5
+2[An 2−]Pd +N

2 I An 2−  0.5+2[An 2−]+N
    (21) 

 

 

The Eq. (12) also may be extended to arbitrary salt mixture (see Eqs. 10, 11, 23, and 24 in 

Ohshima, 1998): 

 

σ, μeq/m
2
 = 0.608×I

0.5
×[Q

2
+ 2(β

-2
 -1)U]

0.5
       (22) 

 

 The available analytical relations are applicable to very fine crystalline particles 

(Eq. 13, 14), or down to the upper limit of high-molecular colloids (Eqs. 12, 22). However, 

most important application of cylindrical model of diffuse layer is that in the molecular 

range (radius of chain of the polymeric acid is few angstroms). In the present study, the 

accurate approximation was deduced, applicable down to molecular size.  
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THEORY 

  

  

 As may be seen from Eq. (14), the 

exact charge-potential relationship for 

may be expressed as 

 

σ, μeq/m
2
 = 0.608×I

0.5
×{Q + {0.5/κa}×Φ}

     

     (23) 

 

Here Φ is some unknown function. 

 In Fig. 1, the function Φ for 1:1 

electrolyte is shown. Points are results of 

numerical integration of the Poisson-

Boltzmann equation, taken from Ohshima 

(1998). The limiting slope of the function 

Φ is defined by Eq. (10), which gives the 

following relation: 

 

 

Φ (at yd → 0, arbitrary salt medium) = {2κa/β - 2κa}yd    (24) 

 

Further, as may be guessed from Fig. 1, this function has asymptote at high surface 

potentials and any size of particle: 

 

Φ (at φd → ∞, 1:1 electrolyte) = 4       (25) 

 

Based on Eqs. (24, 25), variety of close approximations may be deduced. For symmetric 

z:z electrolytes, most accurate approximation is: 

 

Φ ≈ (2b1/z)×ln[{exp(-2/b1) + exp(zFφd/2RT)}/{1 + exp(-2/b1)exp(zFφd/2RT)}] (26) 

 

In accordance with Eq. (24), parameter b1 is defined by: 

 

b1×th(1/b1) = 2κa/β - 2κa        (27) 

 

Eq. (27) may be solved iteratively, or the following approximation may be used (maximum 

error 0.0024 %): 

 

b1 ≈ {x/(1-x)
0.5

}{1-0.5x+5.232x
2
+11.065x

3
+2.95x

4
}/{1+5.385x

2
+13.193x

3
+14.624x

4
} 

           (28) 

 

x = 2κa/β – 2κa         (29) 

 

Down to κa = 0.1, maximum error of Eq. (23 with 26) is 0.1 % (in surface charge), i.e., it is 

almost exact relation. However, Eq. (26) cannot be extended to arbitrary salt mixture. Less 

accurate, but more universal correlation is: 

 

Φ ≈ (2U)×yd/{(ydQ)
4
 + b2×(2U)

4
}

1/4
       (30) 

Fig. 1. The function Φ (see Eq. 23) for 

cylindrical particle in 1:1 electrolyte. 

Points are results of numerical integration 

of Poisson-Boltzmann equation (Ohshima, 

1998). Dashed curves: Eq. 30. 
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The power factor 4 (and 1/4) is fitting parameter, Q is that defined by Eq. (2), or (5), or (8), 

U is that defined by Eq. (15), or (16), or Eqs. (18-21). In accordance with Eq. (24), factor 

b2 is: 

 

b2 = 1/{2κa/β - 2κa}
4
 – 1        (31) 

 

Down to κa = 0.1, maximum error of Eq. (23 with 30) is 0.65 % (in surface charge). The 

Eq. (23 with 30) deviates from Eq. (23 with 26) by 1.8 % in maximum at κa down to 0.01, 

and by 15 % in maximum in the limit κa → 0. Because Eq. (23 with 26) is much more 

accurate, these values may be considered as estimates of accuracy of Eq. (23 with 30) at κa 

< 0.1. 

 

 

EXTENSION TO STERN MODEL 

 

 

In accordance with the Stern model, the head of diffuse layer is separated from the surface 

by some distance λ (familiarly, it is radius of counter ion), and all above relations are valid 

for imaginary cylinder with radius a + λ. Thus the charge of diffuse layer, related to the 

surface area at the head of diffuse layer is defined by:  

 

σd, μeq/m
2
 = – 0.608×I

0.5
×{Q + {0.5/κ(a+ λ)}×Φ}     (32) 

 

The relations for Q (Eq. 2, or 5 or 8) and for Φ (Eq. 26 or 30) stand the same, whereas 

parameters b1 and b2 should be recalculated for larger radius of particle. For clarity, let us 

follow approximation given by Eq. (30). In that case, parameter b2 is defined by 

 

b2 = 1/{2κad/βd - 2κad}
4
 – 1        (33) 

 

ad = a + λ  , and         (34)  

 

βd ≈ κad×ln(1+1/κad)} + 0.1159315×κad/(1 + 6.023(κad)
0.94

 + 8.48(κad)
2
 + 2.78(κad)

3
) (35) 

 

 The charge of cylindrical particle (in Coulombs) is equal by modulus to total charge 

of diffuse layer. In terms of surface charge, this balance equation may be expressed as  

 

σs = – (1+λ/a)σd         (36) 

 

 In accordance with the formula for cylindrical capacitor, the surface potential is 

related with potential at the head of diffuse layer as 

 

φs = φd + {σs/εoε}×a×ln(1+ λ/a) = φd + σs/C      (37) 

 

Here C (C×m
-2

×V
-1

 = F/m
2
) is electric capacitance, related to the surface of particle. 

Consequently, the factor Ps = exp(Fφs/RT) is related with Pd as 

 

Ps = Pdexp[{Fσs/RTεoε}×a×ln{1+λ/a}]  , or      (38)  

Ps = Pdexp[(1/1.85)×[σs, μeq/m
2
]×[a, Å]×ln{1+λ/a}]    (38a) 
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 If the surface charge is generated by dissociation of some acidic surface site, it may 

be simulated by reaction: 

 

SOH
o
 (+ Ps)  SO

-
 + H

+
         (39) 

Ka
o
 = 10

-pH
[SO

-
]/([SOH

o
]Ps)        (40) 

 

Traditionally, the factor Ps
z
 = exp(zFφs/RT) is considered as an “activity coefficient” of 

surface species with charge z (in present case, SO
-
), and this leads to a willing to follow a 

common way for calculation of activity coefficients (speciation → activity coefficients → 

speciation → etc). However, this algorithm is not too convenient, taking into account for 

huge magnitude of this variable (from zero to infinity). From the other hand, as may be 

seen from Eq. (39-40), the factor Ps acts as a component of reaction, and thus, it may be 

calculated on a manner of activity of some component, together with activities of all other 

species, i.e. within a single iteration cycle. To apply this algorithm, it is necessary to 

introduce the charge balance equation (if to follow the common way, it is satisfied 

automatically). For this purpose, let us split the total charge of diffuse layer (Eq. 32) into 

positive and negative branches: 

 

σd = θM - θA          (41) 

 

It should be noted that θM and θA are operational variables. The values θM and θA should be 

positive, and they should satisfy the Eq. (41). Variety of functions complies with these 

conditions. The convenient variant is a following: 

 

θM, μeq/m
2
 =  0.608{Ieff/Pd}

0.5
 + {1.85/[a+λ, Å]}×{(Φ

2
/4 + 1)

0.5
 – Φ/2}  (42) 

θA, μeq/m
2
 =  0.608{Ieff×Pd}

0.5
 + {1.85/[a+λ, Å]}×{(Φ

2
/4 + 1)

0.5
 + Φ/2}     (43) 

 

Thus, the charge balance equation (see Eq. 36) may be rearranged as 

 

[SO
-
] + (1+λ/a)×θA = (1+λ/a)×θM       (44) 

 

Because θM and θA are positive variables, Eq (44) may be used similarly to any other 

balance equation. 

 

 

APPLICATION 

 

 

 Polyacrylic acid (C3H4O2)n has apparent molecular weight 72.064 grams per 

carboxylic group. The distance C-C is about 1.54 Å and angle [C-C-C] is about 109.28
o
 

(tetrahedral angle), which gives segment length about l = 2.51 Å (note that one carbon per 

segment is located outside the chain). Thus, the specific surface area of polyacrylic acid is 

2πal per carboxylic group or 

 

s, m
2
/g = 1318×[a, Å]         (45) 

 

From the other hand, radius of cylinder is related with its density and specific area as 

 

a, Å = 20000×[ρ, g/cm
3
]

-1
×[s, m

2
/g]

-1
      (46) 
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Combining Eqs (45, 46), the following estimates may be obtained: 

 

s, m
2
/g = 5134/[ρ, g/cm

3
]
0.5

           (47) 

 

a, Å = 3.895/[ρ, g/cm
3
]

0.5
           (48) 

 

TS, μmol/m
2
 = 2.703×[ρ, g/cm

3
]

0.5
       (49) 

 

 Fig. 2 shows degree of dissociation 

of polyacrylic acid (data from Nagasawa 

et al., 1965) in comparison with model 

calculations. The value ρ = 1 g/cm
3
 seems 

to be realistic, whereas radius a ~ 3.9 Å is 

close to length of C-C-O-H branch. Thus, 

the values 5134 m
2
/g, TS = 2.703 

μmol/m
2
, and a = 3.895 Å were used in 

model calculations. The values of pKa
o
 = 

4.2 and radius of counter ion λ = 0 Å were 

adjusted. The overlap of diffuse layers 

was not considered, and curves 

correspond to zero concentration of 

polyacrylic acid. For clarity, the 

difference in temperature (i.e., between 15 

and 25
o
C) was neglected, because the 

factor ε×T (see Eq. 1) is almost constant 

over wide range of temperatures. As may 

be seen, this primitive model gives 

reasonable agreement with experimental data. The only strange result is that the “radius of 

counter ion” λ = 0 Å is unrealistic. Perhaps, this reflects the invasion of diffuse layer in-

between the charged groups of molecule of polyacrylic acid. It should be also noted that the 

approximation given by Eqs (23, 30) is accurate, and deviation of the cylindrical diffuse 

layer model from the experiment is objective reality and not uncertainty of calculations.  

 The algorithm of calculations at given pH, [M
+
], [Me

2+
], [A

-
], [An

2-
], Ka

o
, radius of 

cylinder a (Å), radius of counter ion λ (Å), site density TS (μmol/m
2
), specific surface area 

s (m
2
/g): 

 

Calculate: I = 0.5{[M
+
] + 4[Me

2+
] + [A

-
] + 4[An

2-
]}; N = [M

+
] + 2[Me

2+
]; κ, Å

-1
 = I

0.5
/3.04; 

ad = a + λ; βd = (see Eq. 35); b2 = (see Eq. 33) 

Define: Ps = 1, Pd = 1, Ieff = I, B = 0, UMe = 0, UAn = 0 

Cycle. Calculate:   

  Pd = Ps×exp(–B); yd = ln(Pd); Ieff = (see Eq. 19); Q = (see Eq. 5) 

  If [Me
2+

]>0, UMe = (see Eq. 20) 

  If [An
2+

]>0, UAn = (see Eq. 21) 

  U = (see Eq. 18) 

  Φ = yd/(1+b2)
1/4

 

  If |yd| > 0.01, Φ = (see Eq. 30) 

  θM = (see Eq. 42); θA = (see Eq. 43) 

  [SO
-
] = Ka

o
×TS×Ps×10

pH
/(1 + Ka

o
×Ps×10

pH
) 

  PLUS = (1 + λ/a)×θM 

  MINUS = [SO
-
] + (1 + λ/a)×θA 

  Ps1 = Ps×PLUS/MINUS 

3 4 5 6 7 8 9

pH

0.0

0.2

0.4

0.6

0.8

1.0

 =
 C

O
O

  
/T

C
O

O
H

-


t = 15  Co

N
aC

l 0
.1

 M

N
aC

l 0
.0

1 
M

PAA 0.597 g/L
PAA       0

data from
Nagasawa et al. (1965)

Fig. 2. Degree of dissociation of the 

polyacrylic acid (PAA) as function of pH. 

Data from Nagasawa et al. (1965). Curves: 

cylindrical model of diffuse layer. 
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  Ps = (Ps1×Ps)
0.5

 

Compare Ps and Ps1; if necessary, repeat cycle 

Calculate  B1 = {1/1.85}×a×ln(1+λ/a)×{ – [SO
-
]} 

  B = {B1+ 3×B}/4 

Compare B1 and B; if necessary, repeat cycle 

Calculate  σs , μeq/m
2
 = – [SO

-
], or α = [SO

-
]/TS, or COO

-
, meq/g = 0.001×[SO

-
]×s 

 

 

CONCLUDING REMARKS 

 

 The correction of the diffuse double layer model on curvature of cylindrical 

particles is not too complex. In arbitrary (M
+
, Me

2+
)(A

-
, An

2-
) salt medium, and for 

particles of arbitrary size, it may be performed analytically.  
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