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ABSTRACT 
 

The values of potential in the middle between two identical charged surfaces in 

symmetric 1:1 electrolyte solution were calculated numerically for round values of scaled 

potential at interface and scaled distance between charged surfaces. Based on these 

calculations, approximate charge-potential relationship for the overlapped diffuse layers 

was deduced. This relationship was then applied to modeling of acid-base properties. 

Algorithm of calculations is attached.  

 

INTRODUCTION 
 

It is often suspected, that the results of, e.g., pH measurements in suspension are 

affected by overlap of diffuse layers. For instance, “pH of suspension” often differs from 

“pH of overlying solution”. However, this is not the evidence for “suspension effect”. The 

difference may be conditioned by contamination of overlying solution with micro-molar 

impurities (mostly, atmospheric carbon dioxide, introduced together with electrodes). 

Another cause is weak responsibility of ion-selective electrodes at p[Ion] > 5. For pH 

electrodes, the range of doubtful measurements is 5-9. Homogeneous suspension acts as 

buffer solution, and the measured values of pH, even in the range 5-9, are close to reality. 

Contrarily, the measurements of pH in CO2-free water or NaCl solution in the same pH 

range are often followed by large errors (up to 1 pH units, depending on model of 

electrode).  

It should be noted, that the “suspension effect” is simply potential jump at the 

surface of precipitate. This potential jump may be detected with use of two reference 

electrodes: one immersed into precipitate, and second in overlaying solution. Contrarily, 

equilibrium “suspension effect” cannot be detected with use of pair of ion-selective 

electrodes (pH, or pNa, or pCl, or etc.). In equilibrium state, the potential jump at the 

surface of precipitate is completely compensated by concentration difference, and pair of 

identical ion-selective electrodes gives zero response (see Chernoberezhskii, 1982). 

Because of potential jump at the surface of precipitate, true values of pH, pNa, or etc. may 

be obtained, if both ion-selective and reference electrodes are immersed into precipitate, or 

both in overlying solution. 

GOUY-CHAPMANN THEORY. Poisson-Boltzmann equation for flat diffuse 

layer is: 

 

d
2
φx/dx

2
 = – ρx/εoε = – (1000F/εoε)Σziciexp(–ziFφx/RT)       (1) or 

 

d
2
yx/dx

2
 = – (1000F

2
/εoεRT)Σziciexp(–ziyx) = – (κ

2
/2I)Σziciexp(–ziyx)     (1a) 
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Here φx and ρx are potential (V) and charge density (C/m
3
) at distance x (meters) from the 

head of diffuse layer, εo is dielectric constant of free space (8.8542×10
-12

 F/m =            

C×V
-1

×m
-1

), ε is dielectric constant of medium (dimensionless; 78.47 for water at 25
о
С),   

zi is charge of ion “i”, ci is molar concentration of ion “i” in the bulk solution (moles per 

liter), F is Faraday constant (96485 C/mol), R is gas constant (8.314 J×mol
-1

×K
-1

), T is 

absolute temperature (K). The variable y is scaled potential: 

 

y = Fφ/RT             (2) 

 

Parameter κ is inversed Debye length: 

 

κ = (2000F
2
/RTεoε)

0.5
×I

0.5
              (3) or 

 

1/κ, Å = 3.04/I
0.5

            (3a) 

 

Parameter I is ionic strength (moles per liter): 

 

I = 0.5Σzi
2
ci             (4) 

 

Multiplying both sides of Eq. (1a) by 2dyx, one may obtain 

 

2dyx×d{dyx/dx}/dx = d(dyx/dx)
2
 = – {κ

2
/I}Σziciexp(–ziyx)dyx      (5) 

 

 Integration to yx = 0 (at x = ∞) gives the following relation: 

 

dyx/dx = – sgn(yx)×{κ/I
0.5

}×[Σci{exp(–ziyx) –1}]
0.5

        (6) 

 

Here sgn(X) is function “sign of X”, which is -1 at X<0, +1 at X>0 and 0 at X=0. Note that 

sign of (dyx/dx) is opposite to that of yx and (d
2
yx/dx

2
). 

The surface charge σs is related with field strength Ed = – (dφx/dx)x=0 in the head of 

diffuse layer as: 

 

σs = εoεEd = – εoε(dφx/dx)x=0 = – {RTεoε/F}(dyx/dx)x=0       (7) 

 

Combining Eqs. (6) and (7), one may obtain the charge-potential relation for flat 

interface in the absence of overlap of diffuse layers (Gouy-Chapman equation): 

 

σs , C/m
2
 = (2000RTεoε)

0.5
×sgn(yd)×[Σci{exp(–ziyd) –1}]

0.5
 = 

   

= 0.0587×sgn(yd)×[Σci{exp(–ziyd) –1}]
0.5

       (8) or 

 

σs , μeq/m
2
 = 0.608×sgn(yd)×[Σci{exp(–ziyd) –1}]

0.5
       (8a) 

 

Here yd = Fφd/RT is scaled potential in the head of diffuse layer (x = 0).  

For symmetric z:z electrolyte, Eq. (8a) may be reduced to  

 

σs , μeq/m
2
 = 0.608×I

0.5
×{2/z}sh(zyd/2)         (9) 

 

Here z is valency of symmetric z:z electrolyte, and sh(X) = 0.5{exp(X) – exp(–X)} is 

hyperbolic sinus. In homogeneous suspension, the variable [yd – ym] (ym is potential 

between particles, i.e., potential of suspension) acts as determining factor. Within the 
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approach yd ≡ yd – ym, maximum error of Eq. (9) in surface charge is 1 % at κh = 11.9, and 

10 % at κh = 7.5, where h is distance between charged surfaces. If, otherwise, the system is 

determined as equilibrium between suspension and free solution (e.g., between precipitate 

and overlaying solution), the variable yd becomes the determining factor. Within the 

approach yd, h ≡ yd, h=∞, the range of applicability of Eq. (9) is 2-4 times larger: maximum 

error in surface charge is 1 % at κh = 5.3, and 10 % at κh = 3, where κh is related to 

distance between the particles in precipitate. At smaller κh, the error (for both approaches) 

increases to infinity. 

OVERLAP OF DIFFUSE LAYERS: GENERAL. Solution of the Poisson-

Boltzmann equation for two identical overlapped diffuse layers is similar (Corkill and 

Rosenhead, 1939; Verwey, 1940; Verwey and Overbeek, 1948): 

 

dyx/dx = – sgn(yx)×(κ/I
0.5

)×[Σci{exp(–ziyx) – exp(–ziym)}]
0.5

      (10)  

 

σs , μeq/m
2
 = 0.608×sgn(yd)×[Σci{exp(–ziyd) – exp(–ziym)}]

0.5
      (11) 

 

Note here that Eq. (10) is valid for x = 0 ÷ h/2, and it changes sign at x>h/2, where h is 

distance between charged surfaces. The variable ym = Fφm/RT is scaled potential at 

midplane between two charged surfaces, and yd = Fφd/RT, as before, is scaled potential at 

the head of diffuse layer. 

 For symmetric z:z electrolyte, Eq. (11) may be reduced to: 

 

σs , μeq/m
2
 = 0.608×I

0.5
×sgn(yd)×{1/z}[2ch(zyd) – 2ch(zym)]

0.5
      (12) 

 

Here ch(X) = 0.5{exp(X)+exp(-X)} is hyperbolic cosine. 

In accordance with Eq. (10), the potential profile may be found from: 

 

   yx 

κ|x – h/2| = I
0.5

×∫[Σci{exp(–ziy) – exp(–ziym)}]
–0.5

dy        (13) 

   ym 

 

For (yx – ym) → 0 (at x → h/2), in symmetric z:z electrolyte, Eq. (13) may be reduced to 

 

κ|x – h/2| ≈  [2z(yx – ym)/sh(zym)]
0.5

             (14) or 

 

yx-ym ≈ {sh(zym)/2z}×(κx – κh/2)
2
          (14a) 

 

As may be seen, in vicinity of midplane (at x → h/2), the potential profile is parabola.  

In general case, in accordance with Eqs. (13) and (3a), the distance between 

charged interface and midplane is defined by 

 

   yd 

h/2, Å =  3.04×∫[Σci{exp(–ziy) – exp(–ziym)}]
–0.5

dy           (15) 

   ym 

As may be seen, charge-potential relationship for the overlapped diffuse layers may be 

obtained via iterative solution of Eqs. (11) and (15). However, this is almost inapplicable 

in the most of cases. Prior to use in some calculations, it is better to perform accurate 

integration of Eq. (15), and approximate numerical results by some analytical function. 

The tables of (yd, ym, h) relation for 1:1 electrolyte may be found in Verwey and Overbeek 

(1948; κh/2 = 0.00434 ÷ 4.366, yd = 0.5 ÷ 10, and ym = 0.1 ÷ 9.9).  
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 DEBYE-HÜCKEL APPROACH. One may guess that, at small potentials, the 

potential profile between two charged surfaces is superposition: 

 

yx ~ const×{exp(–κx) + exp(–κ(h – x))}         (16) 

 

The factor “const” in Eq. (16) may be found from equality yx = yd at x=0: 

 

yx ≈ yd×{exp(–κx) + exp(–κ(h – x))}/{1 + exp(–κh)}         (17) 

 

Eq. (17) is exact asymptotic potential-distance relation for the case of small potentials. 

From Eq. (17), one may obtain relation between h, yd and ym, valid for yd, ym → 0, and 

arbitrary salt medium (Corkill and Rosenhead, 1939): 

 

yd ≈ ym×ch(κh/2)            (18) 

 

Eq. (18) is exact asymptotic relation. From Eq. (12) and (18), applying equality ch(X) ~ 

1+X
2
/2 (for small X), one may obtain the following charge-potential relations (also for yd, 

ym → 0; arbitrary salt medium): 

 

σs , μeq/m
2
 ≈ 0.608×I

0.5
×th(κh/2)×yd          (19) 

 

σs , μeq/m
2
 ≈ 0.608×I

0.5
×{1/th(κh/4)}×{yd – ym}        (20) 

 

Here th(X) = {exp(X) – exp(–X)}/{exp(X) + exp(–X)} is hyperbolic tangent. Note that 

Eqs. (19, 20) give exact limiting slope, and thus, any empirical approximation should be 

consistent with these relations. 

 ELECTROLYTE-FREE SYSTEMS. Eq. (15) may be integrated analytically for 

the case of zero ionic strength, if the surface charge is compensated by the only kind of 

counter ions (Langmuir, 1938; Verwey 1940; Verwey and Overbeek, 1948): 

 

h/2, Å  = 6.08×|1/zccc,m
0.5

|×arcos[exp{zc(yd – ym)/2}] =  

 

= 6.08×|1/zccc,m
0.5

|×artg[(exp{–zc(yd – ym)} – 1)
0.5

]        (21) or 

 

yd = ym + (2/zc)ln[cos{zccc,m
0.5

[h/2, Å]/6.08}]         (22) 

 

Here zc is charge of counter ion, and cc,m is concentration of counter ion at midplane, 

arcos(X) is arc cosine, artg(X) is arc tangent, and cos(X) is cosine. Note equality (for |X| < 

1): arcos{|X|} = artg{(1/X
2
 – 1)

0.5
}. Note also that the sign of zc is always opposite to that 

of (yd-ym), and thus zc(yd – ym) is always negative. 

For symmetric z:z electrolyte, Eq. (22) gives approximate equality (note that z is 

always positive): 

 

yd ≈ ym – sgn(ym)(2/z)ln[cos{exp(z|ym|/2)κh/4}]         (23) 

 

From Eqs. (11) and (21), the charge-potential relation for electrolyte-free system (e.g., 

suspension plus counter ions with no added salt) is: 

 

σs , μeq/m
2
 = 0.608×sgn(yd)×cc,m

0.5
{exp(–zc(yd – ym)) – 1}

0.5
 = 

 

= – 0.608×{6.08/zc[h/2, Å]}×arcos[exp(zc{yd – ym}/2)]×{exp(–zc(yd – ym)) – 1}
0.5

 = 
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= – 0.608×{6.08/zc[h/2, Å]}×artg[{exp(–zc{yd – ym}) – 1}
0.5

]×{exp(–zc(yd – ym)) – 1}
0.5

  

   (24) 

Here, as above, zc is charge of counter ion. Again, note that zc(yd-ym) is always negative 

and zc is always opposite to surface charge. For symmetric z:z electrolyte, Eq. (24) gives 

approximate equality: 

 

σs , μeq/m
2
 ≈  

 

≈ 0.608×I
0.5

×sgn(yd –ym)×{4/κh}×{1/z}arcos[exp(–z|yd –ym|/2)]×{exp(z|yd –ym|) –1}
0.5

 = 

 

= 0.608×I
0.5

×sgn(yd –ym)×{4/κh}×{1/z}artg[{exp(z|yd –ym|) –1}
0.5

]×{exp(z|yd –ym|) –1}
0.5

                 (25) 

In the limit κh → 0, Eq. (25) is exact relation. Maximum error of Eq. (25) is 1 % at kh = 

0.66, and 10 % at kh = 2.3.   

SUBJECT OF PRESENT WORK. In present work, Eq. (15) was solved 

numerically for round values of κh and yd, which is more convenient for practical needs 

than the tables given by Verwey and Overbeek (1948). Based on these calculations, the 

approximate charge-potential relationship for overlapped diffuse layer was deduced. This 

relationship was then applied to modeling of acid-base properties (algorithm of 

calculations is attached).  

 

METHODS 
 

Eq. (15) can not be integrated accurately near by y – ym = 0. Thus, first ten steps of 

integration were approximated by Eq. (14): 

 

           yn=10 

∆hn=10, Å = 6.08×| ∫[Σci{exp(–ziy) – exp(–ziym)}]
-0.5

dy | ≈     

       ym 

 

≈ {6.08/I
0.5

}[2z(yn=10 – ym)/sh(zym)]
0.5

       (26) 

 

Here, as above, z is valency of symmetric z:z electrolyte. Other steps of integration were 

recovered using Simpson (parabolic) method: 

 

n = 1000000 

h, Å ≈  ∆hn=10 + {1/6}Σ{fn-1+4fn-0.5+fn}{yd – ym}/1000000       (27) 

n = 11 

 

fn-1 = 6.08×[Σci{exp(-ziyn-1) - exp(-ziym)}]
-0.5

       (28) 

 

fn-0.5 = 6.08×[Σci{exp(-ziyn-0.5) - exp(-ziym)}]
-0.5

       (29) 

 

fn = 6.08×[Σci{exp(-ziyn) - exp(-ziym)}]
-0.5

        (30) 

 

yn-1 = ym + (n-1)×(yd – ym)/1000000        (31) 

 

yn-0.5 = ym + (n-0.5)×(yd – ym)/1000000       (32) 

 

yn = ym + n×(yd – ym)/1000000        (33) 
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To estimate accuracy, integration was also performed in accordance with rectangle 

method:  

 

     n = 1000000 

h, Å ≈  ∆hn=10 + Σfn-0.5×(yd – ym)/1000000         (34) 

     n = 11 

 

The difference between parabolic and rectangle methods was considered as a round 

estimate for accuracy of integration. In all calculations, double accuracy (16 digits) was 

applied.  

 

RESULTS 
 

The results of numerical 

integration of Eq. (15) for “NaCl” 

solution are presented in Tab. 1, and 

Fig. 1. In general, results of integration 

by rectangle and parabolic methods 

coincide within 6-10 digits, and the data 

in Tab. 1 are probably exact within the 

last digit. Limiting slope of all curves in 

Fig. 1 is defined by Eq. (18). At high yd, 

the midplane potential ym approaches to 

plateau. This behavior is consistent with 

approximation (see also Eq. 18): 

 

ym ≈ (4/z)th(zyd/4)/ch(κh/2)  (35) 

 

Eq. (35) is roundly applicable for 

symmetric z:z electrolytes down to κh = 

1 (see solid curves in Fig. 1). Down to 

κh = 1, maximum error in surface charge 

in accordance with Eqs. (35) and (12) is 

2.9 %. At smaller κh, error in surface 

charge (with use of Eqs. 35 and 12) 

increases to infinity. In the limit κh → ∞, 

Eq (35) is exact relation. 

 

Tab. 1. Results of numerical integration of Eq. (15) for 1:1 electrolyte. 

yd ym 

 κh = 0.1 κh = 0.2 κh = 0.5 κh = 1 κh = 2 κh = 5 κh = 10 

0.1 0.099875 0.099501 0.096950 0.088668 0.064785 0.016303 0.001347 

0.5 0.499349 0.497407 0.484179 0.441656 0.321460 0.081043 0.006703 

1 0.998533 0.994161 0.964679 0.872787 0.628213 0.159221 0.013201 

2 1.995484 1.982144 1.896399 1.662575 1.156080 0.297967 0.024904 

3 2.987607 2.951889 2.746788 2.302804 1.546654 0.405698 0.034224 

4 3.966818 3.876862 3.457329 2.772817 1.815158 0.482539 0.041031 

6 5.788567 5.391881 4.371228 3.309323 2.106434 0.567758 0.048756 

8 7.110619 6.253520 4.786867 3.534510 2.223359 0.602101 0.051923 

10 7.795446 6.640393 4.956961 3.622906 2.268069 0.615184 0.053138 

Fig. 1. Dependence of ym (scaled midplane 

potential) on yd (scaled potential in the 

head of diffuse layer) at round κh (scaled 

distance between charged surfaces) for 

symmetric 1:1 electrolyte. Down to κh = 1 

(solid symbols), data are consistent with 

Eq. (35, solid curves). For κh < 1 (open 

symbols, connected with dashes for 

guidance), Eq. (35) fails.  
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CHARGE-POTENTIAL RELATIONSHIP  
 

In the most of cases, pH is measured in homogeneous suspension, because the 

buffer capacity of particles leads to stabilization of the electrode response. Thus, the 

variable [yd-ym] acts as determining factor. So on, for practical needs, the charge-[yd-ym] 

relation is most relevant. 

Combining exact asymptotic relations for κh → ∞ and κh → 0, Eqs. (9) and (25), 

and taking into account for limiting slope, as defined by Eq. (20), one may obtain the 

following approximation, valid for symmetric z:z electrolytes: 

 

σs, μeq/m
2
 ≈ 0.608×I

0.5
×{{th(κh/4)}×{2/z}×sh(z(yd-ym)/2) + 

 + sgn(yd-ym)×{2/sh(κh/2)}×{1/z}artg[{exp(z|yd-ym|)-1}
0.5

]{exp(z|yd-ym|)-1}
0.5}    (36) 

 

Note that 2/sh(κh/2) = 1/th(κh/4)-th(κh/4) and thus, the limiting slope of Eq. (36) coincides 

with that of Eq. (20). In both limits, κh → ∞ and κh → 0, Eq. (36) is exact relation. 

Maximum error of Eq. (36) in surface charge is 3.6 %. 

 

 

EXTENSION TO STERN MODEL 
 

 Within the Stern approach, the head of diffuse layer is separated from the surface 

by some distance λ (familiarly, it is radius of counter ion), and all above relations are valid 

for hcorr = h - 2λ. Thus Eq. (36) should be rewritten as:  

 

σs, μeq/m
2
 ≈ 0.608×I

0.5
×{{th(κ(h-2λ)/4)}×{2/z}×sh(z(yd-ym)/2) + 

 

 + sgn(yd-ym){2/sh(κ(h-2λ)/2)}{1/z}artg[{exp(z|yd-ym|)-1}
0.5

]{exp(z|yd-ym|)-1}
0.5} (37) 

 

 In accordance with the Coulomb’s law, the surface potential is related with 

potential at the head of diffuse layer via relation 

 

φs = φd + {σs/εoε}×λ = φd + σs/C          (38) 

 

Here C (C×m
-2

×V
-1

 = F/m
2
) is electric capacitance. Consequently, the potential factor Ps = 

exp(Fφs/RT) is related with Pd = exp(Fφd/RT) as: 

 

Ps = Pdexp[{Fσs/RTεoε}×λ]           (39) or 

 

Ps = Pdexp{0.541×[σs, μeq/m
2
]×[λ, Å]}         (39a) 

 

Note that Coulomb’s law factor 0.541 is related with Gouy-Chapman constant exactly as 

0.541 = 0.2/0.608
2
. 

 

  

MASS ACTION LAW AND BALANCE EQUATIONS 
 

 If the surface charge is generated by dissociation of some acidic surface site, it may 

be simulated by reaction: 
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SOH
o
 (+ Ps)  SO

-
 + H

+
            (40) 

 

Ka
o
 = 10

-pH
[SO

-
]/([SOH

o
]Ps)           (41) 

 

To introduce charge balance equation, let us split the total charge of diffuse layer 

into positive and negative branches: 

 

σs = – {σM – σA}            (42) 

 

σM = {(σs
2
/4 + 1)

0.5
 – σs/2}            (43) 

 

σA = {(σs
2
/4 + 1)

0.5
 + σs/2}               (44) 

 

Here σM and σA are positive variables, corresponding to excess values of cations (M) and 

anions (A) near the surface. Note also that the total charge of diffuse layer is opposite to 

surface charge. With use of these variables, the charge balance equation may be written as 

 

[SO
-
] + σA = σM            (45) 

 

Note that the variables σM and σA are always positive, and Eq (45) may be treated similarly 

to any other mass balance equation. 

 

 

APPLICATION 
 

In Fig. 2, the surface charge of silica is shown, as measured by Bolt (1957). Solid 

curves were calculated with accounting for overlap of diffuse layer. Dashed curves were 

calculated neglecting suspension effect. As may be seen, even at so high surface load (180 

m
2
/g × 429 g/L = 77220 m

2
/L), the “suspension effect” is negligible down to I = 0.01 M. It 

should be also noted that theoretical curves for I = 0.001 M and less coincide each other. In 

addition, geometry of space between the particles is rather different from space between 

two parallel planes. Thus, the present model gives just rough description. To estimate 

distance between particles, the following obvious relation was used 

 

[h, Å] = 2×10
7
/{[SL, g/L]×[S, m

2
/g]}         (46) 

 

Here [SL, g/L] is solid load (30 wt % = 429 g/L), and [S, m
2
/g] is specific surface area (S = 

180 m
2
/g, as measured by Bolt, 1957). Thus, average distance between particles was h = 

259 Å.  

The algorithm of calculations of surface charge in Fig. 2 at given pH, constant of 

deprotonation (pKa
o
 = 7.75), site density of the silica surface (TS = 7.5 μmol/m

2
), ionic 

strength (I, M; 1:1 electrolyte), radius of counter ion ([λ, Å] = 1.5), solid load ([SL, g/L] = 

429), specific surface area ([S, m
2
/g] = 180): 

  

- Apply: Ps-m = 1, Pd-m = 1, B = 0, α = 1 

- Calculate:  

[h, Å] = 2×10
7
/{[SL, g/L]×[S, m

2
/g]} 

κd = {I
0.5

/3.04}×{[h, Å] -2[λ, Å]} 

if κd < 60 then α = {exp(κd/4)-exp(-κd/4)}/{exp(κd/4)+exp(-κd/4)} 

- Cycle. Calculate: 
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Pd-m = Ps-m×exp(-B) 

yd-m = ln(Pd-m) 

σs = 0.608×I
0.5

×α×(Pd-m
0.5

 – 1/Pd-m
0.5

) +  

        +  0.608×I
0.5

×{1/α – α}×sgn(yd-m)×artg[{exp(|yd-m|)-1}
0.5

]×{exp(|yd-m|)-1}
0.5

 

σM = {(σs
2
/4 + 1)

0.5
 – σs/2}   

σA = {(σs
 2

/4 + 1)
0.5

 + σs/2} 

[SO
-
] = TS×10

(pH - pKa
o) 

×Ps-m/(1 + 10
(pH - pKa

o) 
×Ps-m) 

PLUS = σM 

MINUS = [SO
-
] + σA 

P1s-m = Ps-m×(PLUS/MINUS) 

Ps-m = (Ps-m×P1s-m)
0.5

 

- Compare Ps-m and P1s-m; if necessary, repeat cycle 

- Calculate 

 B1 =  0.541×[λ, Å]×{-[SO
-
]} 

 B = (3*B + B1)/4 

- Compare B1 and B; if necessary, repeat cycle 

- Calculate: [Surface charge, μeq/m
2
] = - [SO

-
] 

 

Here variable Pd-m = exp(yd-m), yd-m = yd – ym,  Ps-m = exp(ys-m), and ys-m = ys – ym.    

In Fig. 3, the values of midplane potential are shown as function of surface charge, 

ionic strength, and solid load (sign of midplane potential coincides with that of surface 

charge). These values were calculated iteratively via simultaneous solution of Eqs (12) and 

(36), but with hcorr = h-2λ instead of h. As may be seen, at the ionic strength more than 0.01 

M, or surface load less than 30 000 m
2
/L, the “suspension effect” is negligible. At |σ| > ~ 

0.2 μeq/m
2
, the “suspension effect” is almost independent of surface charge. Practically, 

the effect of overlap (“suspension effect”) is less than 1 log unit (59 mV) at κh = 2 and less 

than 0.1 log unit (6 mV) at κh = 7. At the ionic strengths 0.1, 0.01 and 0.001 mole/L, it is 

less than 0.1 log unit at surface load less than 300 000, 94 000, and 30 000 m
2
/L, 

correspondingly.  

 

  

 

 

 

 

 

 

 

Fig. 3. Calculated “suspension effect”    

(φm , mV = 25.7×ym) for 30 wt % (429 g/L) 

suspension of amorphous silica (S = 180 

m
2
/g) at 0.001 and 0.01 M ionic strength 

(black curves). And  for 10 wt % (111 g/L) 

suspension at 0.001 M ionic strength (grey 

curve).  

Fig. 2. Surface charge of silica in NaCl 

solutions. Data from Bolt (1957). Solid 

curves: Stern model with correction on 

overlap of diffuse layers. Dashed 

curves: Stern model without overlap of 

diffuse layers.  
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CONCLUDING REMARKS 
 

In the most of laboratory cases, the “suspension effect” is negligible. However, the 

“suspension effect” may be significant, e.g., for compact clays. For instance, the compact 

clays should be more selective for polyvalent metal ions than the same clay in dilute 

suspension (in both cases, with respect to withdrawn solutions).  
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