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ABSTRACT 

 

Paper presents simple and accurate algorithm for numerical solution of equations with 

second derivative. Method was tested via comparison with known analytical solutions for 

circular and elliptic planetary orbits.  

  

INTRODUCTION TO NEBULAR MECHANICS 
 

In accordance with Newton’s law, solar gravity may be expressed as: 

 

g = kG×M/r
2
 = K/r

2
        (1) 

 

Here g is acceleration of gravity, kG is gravity constant (≈ 6.67384×10
-11

 m
3
×s

-2
×kg

-1
: Mohr et 

al., 2012), M is mass of Sun (≈ 1.98855×10
30

 kg: calculated from K), K = kG×M is solar 

gravity constant (≈ 1.3271283×10
20

 m
3
/s

2
: calculated from Eqs. 30 and 23) and r is distance to 

the Sun.  

The planetary orbit is located in a single plane. Because of this, one may consider two 

coordinates of planet, x and y. If to assume that the Sun is located at origin (x = 0, y = 0), 

components of acceleration, gx and gy, and distance to the Sun, r, are defined by: 

 

r = (x
2
 + y

2
)
0.5

          (2) 

d
2
x/dt

2
 = gx = – g×x/r = – K×{x/r

3
}       (3) 

d
2
y/dt

2
 = gy = – g×y/r = – K×{y/r

3
}       (4) 

 

Here t is time. 

 

ANALYTICAL SOLUTION FOR CIRCULAR ORBIT 

 

If radius of the orbit r = ro is constant (~ 149.5978707×10
9
 m for the Earth: Pitjeva and 

Standish, 2009; Luzum et al, 2011), the mathematic model is very simple. For exactly circular 

orbit, velocity v = vo is also constant (~ 29785 m/s for the Earth), and may be calculated as: 

 

vo = 2πro/τs = {K/ro}
0.5

        (5) 

  

Here π = 3.141592653589793…, and τs is so called sidereal year, which is period of rotation 

around the Sun with respect to “fixed stars” (for the Earth: 31558150 s or 365 days, 6 hours, 9 

minutes, and 10 seconds: Encyclopedia Britannica): 

                                                 
1
 with insignificant corrections from 15.06.2015 and 23.11.2015 
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τs = 2π(ro
3
/K)

0.5
         (6) 

 

Similarly, acceleration at exactly circular orbit is also constant (≈ 5.9301×10
-3

 m/s
2
 for the 

Earth’s orbit): 

 

go = K/ro
2
 = vo

2
/ro = 4π

2
ro/τs

2
       (7) 

 

Applying x, y = 0 for coordinates of Sun, assuming contra-clock rotation and, beginning from “3 

o’clock”, the initial state (t = 0) for planet may be defined as:  

 

xo = ro            (8) 

yo = 0           (9) 

 

vxo = 0           (10) 

vyo = vo          (11) 

 

gxo = – go          (12) 

gyo = 0           (13) 

 

For the exactly circular orbit around the immobile Sun, velocity and its components, acceleration 

and its components, and coordinates of planet are then given by 

  

 x = rocos(2πt/τs)         (14) 

y = rosin(2πt/τs)         (15) 

r = ro = (x
2
 + y

2
)
0.5

         (16) 

 

vx = – vo×y/ro = – vo×sin(2πt/τs)       (17) 

vy =    vo×x/ro =    vo×cos(2πt/τs)       (18) 

v = vo = (vx
2
 + vy

2
)
0.5

         (19) 

 

gx = – go×x/ro = – go×cos(2πt/τs)       (20) 

gy = – go×y/ro = – go×sin(2πt/τs)       (21) 

g = go = (gx
2
 + gy

2
)
0.5

         (22) 

 

Here t is elapsed time (t = 0 corresponds to Eqs 8-13).  

 

 

ANALYTICAL SOLUTION FOR ELLIPTIC ORBIT 
 

The elliptic orbit may be defined by two parameters: large semi-axis, a, and eccentricity, 

e (see Fig. 1). Large semi-axis of the Earth’s orbit is equal to 1 astronomic unit (a.u.), which is 

(Pitjeva and Standish, 2009; Luzum et al, 2011): 

 

a = 1 a.u. = 149.5978707×10
9
 m       (23) 

 

Eccentricity of the elliptic orbit, e (~ 0.01671 for the Earth’s orbit), is dimensionless parameter 

ranging from e = 0 (for exactly circular orbit) to e ≈ 1 (for ellipse reduced to straight line). 
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With known a and e, one may calculate other characteristics of orbit (see Fig. 1): 

 

b = a(1 – e
2
)
0.5

          (24) 

 ra = a(1 + e)          (25) 

 rp = a(1 – e)          (26) 

 

Here b is small semi-axis, rp is perifocal radius (perihelion, minimum distance to the Sun), and   

ra is apofocal radius (aphelion, maximum distance to the Sun). 

Other useful relations: 

  

 e = {1 – (b/a)
2
}

0.5
 = {ra – rp}/{ra + rp}      (27) 

 a = (ra + rp)/2          (28) 

 b = (rarp)
0.5

          (29) 

   

The period of rotation around the Sun with respect to “fixed stars”, i.e., sidereal year, τs 

(for the Earth: 31558150 s or 365 days, 6 hours, 9 minutes, and 10 seconds: Encyclopedia 

Britannica) is defined by third Kepler’s law: 

 

τs = 2π(a
3
/K)

0.5
         (30) 

 

As may be seen from Eq. (30), variety of elliptic orbits, which may be inscribed into circular 

orbit (applying parallel shift, see Fig. 2), all have equal periods of rotation around the Sun, 

independent of eccentricity. 

-2.0 -1.6 -1.2 -0.8 -0.4 0.0 0.4

x

-0.8

-0.4

0.0

0.4

0.8

y

b a

r

rp

a

a
p

h
el

io
n

p
er

ih
el

io
n

Sun

e = 0.95

e = 0.8

e = 0.5

e = 0

 
 

Fig. 1 Elements of elliptic orbit (at eccentricity  

e = 0.8):      large semi-axis a = 1,  

                   small semi-axis b = 0.6,  

                   apofocal radius ra = 1.8,  

                   perifocal radius rp = 0.2. 

Fig. 2 Family of orbits specified by equal 

large semi-axis and equal periods of rotation. 

To match positions of perihelion and 

aphelion, elliptic orbits were shifted to the 

right; thus position of Sun shifts to the right 

with eccentricity. 
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Orbital velocity may be obtained from energy balance, which gives relation 

 

 v
2
 = K{2/r – (1 – e)/rp} = K{2/r – 1/a}      (31) 

 

From Eq (31), velocity varies between minimum, va (in aphelion), and maximum, vp (in 

perihelion): 

 

 va
2
 = K(1 – e)/ra  = K{(1 – e)/(1 + e)}/a      (32) 

vp
2
 = K(1 + e)/rp = K{(1 + e)/(1 – e)}/a      (33) 

 

 Let us assume that the large semi axis coincides with “x” axis, the Sun is located in the 

right focus of ellipse, and its coordinates are x=0 and y=0 (see Fig. 1). In this case, the initial 

state (t = 0) may be defined by (again, assuming contra-clock rotation and, beginning from “3 

o’clock”): 

 

xo = rp = a(1 – e)         (34) 

yo = 0           (35) 

vxo = 0           (36) 

vyo = vp = {K(1 + e)/rp}
0.5

 = {K{(1 + e)/(1 – e)}/a}
0.5

    (37) 

gxo = – K/rp
2
 = – K/{a(1 – e)}

2
      (38) 

gyo = 0           (39) 

 

In this case, coordinates of planet, velocity and its components, acceleration and its components 

are given by  

 

 x = a×cos(E) – ae         (40) 

y = b×sin(E)          (41) 

r = (x
2
 + y

2
)
0.5

 = a{1 – e×cos(E)}       (42) 

 

vx = – v{y/b} = – v×sin(E)        (43) 

vy = v{x/a + e} = v×cos(E)        (44) 

v
2
 = vx

2
 + vy

2
 = K{2/r – 1/a} = {K/a}{1 + e×cos(Z)}/{1 – e×cos(Z)}  (45) 

 

gx = – g×x/r = – g(cos(E) – e)/{1 – ecos(E)}      (46) 

gy = – g×y/r = – g{b/a}sin(E)/{1 – ecos(E)}      (47) 

g = (gx
2
 + gy

2
)
0.5

 = K/r
2
 = K/[a{1 – e×cos(E)}]

2
     (48) 

 

Here E is intermediate variable (so called “eccentric anomaly”), which is related with time as 

 

E – e×sin(E) = 2πt/τs          (49) 

 

Here, as before, t = 0 corresponds initial state given by Eqs. (34-39). Eq. (49) can not be solved 

analytically with respect to E, and should be solved iteratively.  

It should be noted that the real Sun has its own very complex trajectory with radius about 

1 million of kilometers (mainly, due to influence of the Jupiter), and the analytical solutions, 

given above, are just approximations to reality. However, these analytical solutions are excellent 

tool for calibration of numerical methods.   
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NUMERICAL INTEGRATION 
 

In general case, double integration of equations such as Eqs. (3, 4) is based on 

extrapolation of “current parameters” of state to “near future”. “Current parameters” may be 

marked with subscript “1”. “New parameters”, which should be guessed from current ones, may 

be marked with subscript “2”.  

If the period of rotation τs (sidereal year) is known, it is convenient to express time 

increment Δt = t2 – t1 as  

 

Δt = τs/N          (50) 

 

Here N is total number of steps per rotation. If eccentricity of orbit ranges from 0 to 1, the orbit 

is ellipse, and planet should return to initial (t = 0) position at Nth step of integration.  

 

FIRST APPROACH INTEGRATION SCHEME 

 

One may assume, that changes of acceleration during time step Δt = t2 – t1 are negligible: 

 

gx (from t1 to t2) = gx1         (51) 

gy (from t1 to t2) = gy1         (52) 

 

Thus new values for the components of velocity may be found via integration of Eqs.(51, 52) 

from t1 to t2 = t1 + Δt: 

 

vx2 = vx1 + gx1Δt         (53) 

vy2 = vy1 + gy1Δt         (54) 

 

Similarly, one may estimate new coordinates, and new distance to the Sun: 

 

x2 = x1 + vx1Δt + gx1Δt
2
/2        (55) 

y2 = y1 + vy1Δt + gy1Δt
2
/2        (56) 

r2 = (x2
2
 +y2

2
)
0.5

         (57) 

 

Thus, new values for components of acceleration may be calculated from: 

 

 gx2 = – g2{x2/r2} = – K{x2/r2
3
}       (58) 

gy2 = – g2{y2/r2} = – K{y2/r2
3
}       (59) 

 

And now, applying x1 = x2, y1 = y2, vx1 = vx2, vy1 = vy2, gx1 = gx2, gy1 = gy2, one may return to Eqs 

(53-59) to perform next step of integration. 

 The first approach is very uncertain and not applicable in the most of cases. As may be 

seen in Tab. 1, error is proportional to [t, years]
2
, and inversely proportional to [N, steps per 

year]. In the limit e → 1, velocity in perihelion, vp, and thus length of step, vp×Δt, approaches to 

infinity. Because of this, in the limit e → 1, error also approaches to infinity:   

 

Error, km ~ 3×10
10

{1 + e/(1 – e)
2.5

}[t, years]
2
/[N, steps per year]   (60) 
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Tab. 1. First approach: maximum error in coordinates, as {(x – xexact)
2
 + (y – yexact)

2
}

0.5
, km. 

In square brackets: duration of calculations.  

Analytical model: a = 149597870.7 km ; 1 year (i.e. 1 rotation) = 31558150 s. 

N, steps 

per year 

E Max. error for 1 year Max. error for 10 years 

       100 0 219 000 000 km         [~ 0 s] 516 000 000 km                 [~ 0 s]  

    1 000 0   27 700 000 km         [~ 0 s] 338 000 000 km              [~ 0.3 s] 

  10 000 0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

    2 840 000 km  

    3 200 000 

    3 870 000 

    5 030 000            [~ 0.3 s] 

    7 110 000 

  11 100 000 

  20 000 000 

235 000 000 km  

 

 

                                        [~ 1.8 s] 

100 000 

 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

       284 000 km  

       321 000 

       387 000  

       503 000  

       711 000            [~ 1.8 s] 

    1 110 000  

    2 010 000  

    4 440 000  

  14 100 000         

  27 700 000 km  

  31 500 000 

  38 200 000 

  49 500 000                   

  68 700 000                     [~ 17 s] 

101 000 000 
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Tab. 2. Second approach: maximum error in coordinates, as {(x – xexact)
2
 + (y – yexact)

2
}

0.5
, km. 

In square brackets: duration of calculations.  

Analytical model: a = 149597870.7 km ; 1 year = 31558150 s. 

N, steps 

per year 

e Max. error for 1 year  Max. error for 10 years 

      100 0 

0.1 

0.2 

0.3 

     621 000 km             

  1 820 000                  [~ 0 s] 

  4 090 000 

  8 900 000 

    6 210 000 km          

  18 200 000                 [~ 0 s] 

  40 600 000 

  85 300 000 

   1 000 0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

         6 180 km             

       18 100 

       40 700 

       88 400                  [~ 0 s] 

     201 000 

     507 000 

  1 510 000 

  5 990 000 

         61 800 km          

       181 000 

       407 000 

       884 000                 [~ 0.4 s] 

    2 010 000 

    5 070 000 

  15 100 000 

  55 500 000 

  10 000 0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

              61.8 km          

            181 

            407 

            884 

         2 010                  [~ 0.4 s] 

         5 070 

       15 100 

       59 800 

     400 000 

  9 520 000 

              618 km           

           1 810 

           4 070 

           8 840 

         20 100                 [~ 3 s] 

         50 700 

       151 000 

       598 000 

    3 990 000 

  63 600 000 

100 000 

 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.95 

0.98 

                0.618 km         

                1.81 

                4.07 

                8.84 

              20.1 

              50.7               [~ 3 s] 

            151 

            598 

         4 000 

       97 000 

  2 260 000 

50 300 000 

                  6.18 km       

                18.1 

                40.7 

                88.4 

              201 

              507                 [~ 32 s] 

           1 510 

           5 980 

         40 000 

       970 000 

  18 400 000 

201 000 000 
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Tab. 3. Third approach: maximum error in coordinates, as {(x – xexact)
2
 + (y – yexact)

2
}

0.5
, km. 

Numbers in square brackets: duration of calculations.  

Analytical model: a = 149 597 870.7 km ; 1 year = 31558150 s. 

N, steps 

per year 

e Max. error for 1 year Max. error for 10 years 

      100 0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

              32.5 km 

              65.1 

            245 

            678 

         1 830                      [~ 0 s] 

         4 820 

         6 660 

     220 000 

21 500 000 

              307 km 

              650 

           2 450 

           6 770 

         18 200                   [~ 0 s] 

         47 500 

       113 000 

    2 490 000 

155 000 000     

   1 000 0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.95 

                0.00326 km  

                0.00651  

                0.0245 

                0.0680 

                0.185 

                0.504               [~ 0 s] 

                1.04 

               9.60 

            676 

     245 000 

55 400 000 

                  0.030 7 km 

                  0.064 9 

                  0.245 

                  0.680 

                  1.85 

                  5.04           [~ 1 s] 

                10.4 

                93.9 

           6 760 

    2 470 000 

240 000 000  

  10 000 0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.95 

0.98 

                0.000 000 60 km 

                0.000 002 53 

                0.000 006 25 

                0.000 039 1 

                0.000 057 9 

                0.000 020 3    [~ 1 s] 

                0.000 144 

                0.000 916 

                0.066 5 

              22.2 

         5 100 

  5 720 000 

                0.000 006 90 km 

                0.000 639 

                0.000 039 

                0.000 243 

                0.000 849 

                0.001 08      [~ 7.5 s] 

                0.001 40 

                0.010 

                0.664 

            222 

       51 000 

29 100 000  

100 000 

 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.95 

0.98 

0.99 

                0.000 003 8 km 

                0.000 012 3 

                0.000 051 6 

                0.000 038 7 

                0.000 053 8 

                0.000 055 8 

                0.000 063 4    [~ 7.5 s] 

                0.000 041 0 

                0.000 163 

                0.002 69 

                0.506 

            553 

     105 000 

                0.000 044 

                0.000 095 

                0.000 486 

                0.000 186 

                0.002 95 

                0.001 32 

                0.001 41      [~72 s] 

                0.002 54 

                0.000 703 

                0.017 3 

                5.07 

         5 530 

  1 040 000  
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SECOND APPROACH INTEGRATION SCHEME 

 

 Second approach is based on assumption that the acceleration changes linearly with time 

within the time step t2 – t1 = Δt: 

 

gx (from t1 to t2) = gx1 + bx1×(t – t1)       (61)  

gy (from t1 to t2) = gy1 + by1×(t – t1)       (62)  

 

Here bx1 and by1 are some unknown coefficients. Thus, the components of acceleration at the 

moment of time t2 are related with these at t1 as: 

 

gx2 = gx1 + bx1×Δt         (63) 

gy2 = gy1 + by1×Δt         (64) 

 

New coordinates and new distance to the Sun may be obtained via double integration of Eqs (61, 

62) from t1 to t2 = t1 + Δt, with coefficients bx1 and by1 substituted from Eqs (63, 64) 

 

x2 = x1 + vx1Δt + (1/2)gx1Δt
2
 + (1/6)bx1Δt

3
 = 

= x1 + vx1Δt + (1/6){2gx1 + gx2)Δt
2
   (65) 

 y2 = y1 + vy1Δt + (1/2)gy1Δt
2
 + (1/6)by1Δt

3
 =  

= y1 + vy1Δt + (1/6){2gy1 + gy2)Δt
2
   (66) 

r2 = (x2
2
+y2

2
)
0.5

         (67) 

 

At first iteration, the values gx2 and gy2 should be estimated as gx2 = gx1 and gy2 = gy1. With 

estimates for x2, y2 and r2, one may obtain closer estimates for gx2 and gy2: 

  

 g2 = K/r2
2
          (68) 

 gx2 = – g2{x2/r2} = – K{x2/r2
3
}       (69) 

gy2 = – g2{y2/r2} = – K{y2/r2
3
}       (70) 

 

Now, with new values for gx2 and gy2, one may return to Eqs (65-70) to obtain more close 

estimates. Within the present scheme, one re-iteration is enough, whereas second and third re-

iterations give no improvement. New values for the components of velocity may be then 

obtained via single integration of Eqs (61, 62) from t1 to t2 = t1 + Δt: 

 

vx2 = vx1 + gx1Δt + (1/2)bx1Δt
2
 =  

= vx1 + (1/2){gx1 + gx2}Δt     (71) 

vy2 = vy1 + gy1Δt + (1/2)by1Δt
2
  =  

= vy1 + (1/2){gy1 + gy2}Δt     (72) 

 

Now, applying x1 = x2, y1 = y2, vx1 = vx2, vy1 = vy2, ax1 = ax2, and ay1 = ay2, one may return to Eqs. 

(65-72), and perform next step of integration. As may be seen from Tab. 2, accuracy of the 

second approach is ~ 3-6 orders better than for the first approach (see Tab. 1). Error is directly 

proportional to time (years), and inversely proportional to N
2
. Like in case of first approach, in 

the limit e → 1, error increases to infinity:  

 

Error, km ~ 7×10
9
{(1 + e)/(1 – e)}

4
[t, years]/[N, steps per year]

2
    (73) 
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THIRD APPROACH INTEGRATION SCHEME 

  

Third approach is based on assumption that the acceleration changes with time (within 

the time step Δt = t2 – t1) along with parabola: 

 

gx (from t1 to t2) = gx1 + bx1×{t-t1} + cx1×{t-t1}
2
     (74) 

gy (from t1 to t2) = gy1  + by1×{t-t1} + cx1×{t-t1}
2
     (75) 

 

Here bx1, by1, cx1, and cy1 are some unknown coefficients.  

Thus, the components of acceleration at time t2 are related with these at t1 as: 

 

gx2 = gx1  +  bx1×Δt  +  cx1×Δt
 2
       (76) 

gy2 = gy1  +  by1×Δt  +  cy1×Δt
 2
       (77) 

 

To obtain coefficients b and c of parabola, it is necessary to know, at least, 3 points. Therefore, 

in addition to times t1 and t2, it is necessary to consider also the “mid point”, at tm = (t1 +  t2)/2. In 

accordance with Eqs (74, 75), components of acceleration in the midpoint are: 

 

gxm = gx1  +  bx1×{Δt/2}  +  cx1×{Δt/2}
2
      (78) 

gym = gy1  +  by1×{Δt/2}  +  cy1×{Δt/2}
2
      (79) 

 

Coordinates of midpoint xm and ym, and distance from midpoint to the Sun rm may be estimated 

via double integration of Eqs (74, 75) from t = t1 to t = t1 + (Δt/2), with coefficients bx1, by1, cx1 

and cy1 substituted from Eqs (76-79): 

 

xm = x1 + {vx1/2}Δt + {gx1 /8}Δt
2
 + {bx1/48}Δt

3
 + {cx1/192}Δt

4
 = 

= x1 + {vx1/2}Δt + {1/96}{7gx1 + 6gxm – gx2}Δt
2
 (80) 

ym = y1 + {vy1/2}Δt + {gy1 /8}Δt
2
 + {by1/48}Δt

3
 + {cy1/192}Δt

4
 = 

= y1 + {vy1/2}Δt + {1/96}{7gy1 + 6gym – gy2}Δt
2
 (81) 

 rm = (xm
2
 + ym

2
)
0.5

         (82) 

 

At first iteration, the values gxm , gym , gx2 and gy2 in Eqs (80, 81) should be estimated as          

gxm = gx1 , gym = gy1 , gx2 = gx1 and gy2 = gy1. Then, with estimates for xm and ym, the components 

of acceleration gxm, gym at midpoint may be estimated from: 

 

 gxm = – K{xm/rm
3
}         (83) 

gym = – K{ym/rm
3
}         (84)  

 

Similarly, new coordinates, x2 and y2, and new distance to the Sun, r2, may be calculated from:   

 

x2 = x1 + vx1Δt + (1/2)gx1Δt
2
 + (1/6)bx1Δt

3
 + (1/12)cx1Δt

4
 = 

= x1 + vx1Δt + (1/6){gx1 + 2gxm}Δt
2
   (85) 

 

 y2 = y1 + vy1Δt + (1/2)gy1Δt
2
 + (1/6)by1Δt

3
 + (1/12)cy1Δt

4
 = 

= y1 + vy1Δt + (1/6){gy1 + 2gym)Δt
2
   (86) 

 

r2 = (x2
2
+y2

2
)
0.5

         (87) 
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With these values, new components of acceleration may be found from: 

 

 gx2 = – K{x2/r2
3
}         (88) 

gy2 = – K{y2/r2
3
}         (89) 

 

Now, with estimates for gxm , gym , gx2 and gy2, it is necessary to perform re-iteration, beginning 

from Eq. (80), in order to obtain more close values. Within the present scheme, two re-iterations 

are enough, whereas third and forth re-iterations give no improvement.   

New components of velocity may be then calculated as: 

 

vx2 = vx1 + gx1Δt + (1/2)bx1Δt
2
 + (1/3) cx1Δt

3
  = 

= vx1 + (1/6){gx1 + 4gxm + gx2}Δt   (90) 

vy2 = vy1 + gy1Δt + (1/2)by1Δt
2
 + (1/3) cy1Δt

3
  = 

     = vy1 + (1/6){gy1 + 4gym + gy2}Δt   (91) 

 

Now, applying x1 = x2, y1 = y2, vx1 = vx2, vy1 = vy2, gx1 = gx2, and gy1 = gy2, gxm = gx2, and gym = 

gy2, one may return to Eqs. (80-91), and perform next step of integration.  

As may be seen from Tab. 3, accuracy of the third approach is ~ 3-6 orders better than for the 

second approach (see Tab. 2). Error is directly proportional to time (years), inversely 

proportional to N
4
. Like in case of first and second approaches, in the limit e → 1, error increases 

to infinity. Due to significant contribution from rounding errors, uncertainty oscillates with 

eccentricity and increases with N at N > 1/10000 at low eccentricities. In general, error is 

consistent with relation: 

 

Error, km ~ 3×10
9
×[t, years]/{(1-e)

8
[N, steps per year]

4
} +  

   + 3×10
-11

×[t, years]×[N, steps per year]×{1 + 50×e} (92) 

 
Note that the second term in Eq. (92) reflects the rounding error for calculations with double 

accuracy (i.e. with 16 digits). 

 

 

CONCLUDING REMARKS 
 

Even with time step 1/1000 of rotation (“year”), third approach is efficient method for 

calculation of planetary orbits. However, for the orbits of comets, third approach is applicable 

solely with time step 1/1000000 of rotation and smaller. In general, third approach integration 

scheme is almost exact method for majority of applications.    
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