NUMERICAL SOLUTION OF EQUATIONS WITH SECOND DERIVATIVE: CASE OF NEBULAR MECHANICS

Sergey Pivovarov
Institute of Experimental Mineralogy, Russian Academy of Sciences
142432 Chernogolovka, Moscow district, Russia
E-mail: serg@iem.ac.ru

Published on-line 30.03.2015 ${ }^{1}$

Abstract

Paper presents simple and accurate algorithm for numerical solution of equations with second derivative. Method was tested via comparison with known analytical solutions for circular and elliptic planetary orbits.

INTRODUCTION TO NEBULAR MECHANICS

In accordance with Newton's law, solar gravity may be expressed as:

$$
\begin{equation*}
\mathrm{g}=\mathrm{k}_{\mathrm{G}} \times \mathrm{M}_{\odot} / \mathrm{r}^{2}=\mathrm{K}_{\odot} / \mathrm{r}^{2} \tag{1}
\end{equation*}
$$

Here g is acceleration of gravity, k_{G} is gravity constant $\left(\approx 6.67384 \times 10^{-11} \mathrm{~m}^{3} \times \mathrm{s}^{-2} \times \mathrm{kg}^{-1}\right.$: Mohr et al., 2012), M_{\odot} is mass of $\operatorname{Sun}\left(\approx 1.98855 \times 10^{30} \mathrm{~kg}\right.$: calculated from $\left.\mathrm{K}_{\odot}\right), \mathrm{K}_{\odot}=\mathrm{k}_{\mathrm{G}} \times \mathrm{M}_{\odot}$ is solar gravity constant ($\approx 1.3271283 \times 10^{20} \mathrm{~m}^{3} / \mathrm{s}^{2}$: calculated from Eqs. 30 and 23) and r is distance to the Sun.

The planetary orbit is located in a single plane. Because of this, one may consider two coordinates of planet, x and y. If to assume that the Sun is located at origin ($x=0, y=0$), components of acceleration, g_{x} and g_{y}, and distance to the Sun, r, are defined by:

$$
\begin{align*}
& r=\left(x^{2}+y^{2}\right)^{0.5} \tag{2}\\
& d^{2} x / d t^{2}=g_{x}=-g \times x / r=-K_{\odot} \times\left\{x / r^{3}\right\} \tag{3}\\
& d^{2} y / d t^{2}=g_{y}=-g \times y / r=-K_{\odot} \times\left\{y / r^{3}\right\} \tag{4}
\end{align*}
$$

Here t is time.

ANALYTICAL SOLUTION FOR CIRCULAR ORBIT

If radius of the orbit $r=r_{0}$ is constant $\left(\sim 149.5978707 \times 10^{9} \mathrm{~m}\right.$ for the Earth: Pitjeva and Standish, 2009; Luzum et al, 2011), the mathematic model is very simple. For exactly circular orbit, velocity $\mathrm{v}=\mathrm{v}_{\mathrm{o}}$ is also constant $(\sim 29785 \mathrm{~m} / \mathrm{s}$ for the Earth), and may be calculated as:

$$
\begin{equation*}
\mathrm{v}_{\mathrm{o}}=2 \pi \mathrm{r}_{\mathrm{o}} / \tau_{\mathrm{s}}=\left\{\mathrm{K}_{\odot} / \mathrm{r}_{\mathrm{o}}\right\}^{0.5} \tag{5}
\end{equation*}
$$

Here $\pi=3.141592653589793 \ldots$, and τ_{s} is so called sidereal year, which is period of rotation around the Sun with respect to "fixed stars" (for the Earth: 31558150 s or 365 days, 6 hours, 9 minutes, and 10 seconds: Encyclopedia Britannica):

[^0]\[

$$
\begin{equation*}
\tau_{\mathrm{s}}=2 \pi\left(\mathrm{r}_{\mathrm{o}}{ }^{3} / \mathrm{K}_{\odot}\right)^{0.5} \tag{6}
\end{equation*}
$$

\]

Similarly, acceleration at exactly circular orbit is also constant $\left(\approx 5.9301 \times 10^{-3} \mathrm{~m} / \mathrm{s}^{2}\right.$ for the Earth's orbit):

$$
\begin{equation*}
\mathrm{g}_{\mathrm{o}}=\mathrm{K}_{\odot} / \mathrm{r}_{\mathrm{o}}^{2}=\mathrm{v}_{\mathrm{o}}^{2} / \mathrm{r}_{\mathrm{o}}=4 \pi^{2} \mathrm{r}_{\mathrm{o}} / \tau_{\mathrm{s}}^{2} \tag{7}
\end{equation*}
$$

Applying $\mathrm{x}, \mathrm{y}=0$ for coordinates of Sun, assuming contra-clock rotation and, beginning from " 3 o'clock", the initial state $(\mathrm{t}=0)$ for planet may be defined as:

$$
\begin{align*}
& \mathrm{x}_{\mathrm{o}}=\mathrm{r}_{\mathrm{o}} \tag{8}\\
& \mathrm{y}_{\mathrm{o}}=0 \tag{9}\\
& \mathrm{v}_{\mathrm{xo}}=0 \tag{10}\\
& \mathrm{v}_{\mathrm{yo}}=\mathrm{v}_{\mathrm{o}} \tag{11}\\
& \mathrm{~g}_{\mathrm{xo}}=-\mathrm{g}_{\mathrm{o}} \tag{12}\\
& \mathrm{~g}_{\mathrm{yo}}=0 \tag{13}
\end{align*}
$$

For the exactly circular orbit around the immobile Sun, velocity and its components, acceleration and its components, and coordinates of planet are then given by

$$
\begin{align*}
& \mathrm{x}=\mathrm{r}_{\mathrm{o}} \cos \left(2 \pi \mathrm{t} / \tau_{\mathrm{s}}\right) \tag{14}\\
& \mathrm{y}=\mathrm{r}_{\mathrm{o}} \sin \left(2 \pi \mathrm{t} / \tau_{\mathrm{s}} \mathrm{~s}\right. \tag{15}\\
& \mathrm{r}=\mathrm{r}_{\mathrm{o}}=\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{0.5} \tag{16}\\
& \mathrm{v}_{\mathrm{x}}=-\mathrm{v}_{\mathrm{o}} \times \mathrm{y} / \mathrm{r}_{\mathrm{o}}=-\mathrm{v}_{\mathrm{o}} \times \sin \left(2 \pi \mathrm{t} / \tau_{\mathrm{s}}\right) \tag{17}\\
& \mathrm{v}_{\mathrm{y}}=\mathrm{v}_{\mathrm{o}} \times \mathrm{x} / \mathrm{r}_{\mathrm{o}}=\mathrm{v}_{\mathrm{o}} \times \cos \left(2 \pi \mathrm{t} / \tau_{\mathrm{s}}\right) \tag{18}\\
& \mathrm{v}=\mathrm{v}_{\mathrm{o}}=\left(\mathrm{v}_{\mathrm{x}}^{2}+\mathrm{v}_{\mathrm{y}}{ }^{2}\right)^{0.5} \tag{19}\\
& \tag{20}\\
& \mathrm{~g}_{\mathrm{x}}=-\mathrm{g}_{0} \times \mathrm{x} / \mathrm{r}_{\mathrm{o}}=-\mathrm{g}_{\mathrm{o}} \times \cos \left(2 \pi \mathrm{t} / \tau_{\mathrm{s}}\right) \tag{21}\\
& \mathrm{g}_{\mathrm{y}}=-\mathrm{g}_{\mathrm{o}} \times \mathrm{y} / \mathrm{r}_{\mathrm{o}}=-\mathrm{g}_{\mathrm{o}} \times \sin \left(2 \pi \mathrm{t} / \tau_{\mathrm{s}}\right) \tag{22}\\
& \mathrm{g}=\mathrm{g}_{\mathrm{o}}=\left(\mathrm{g}_{\mathrm{x}}{ }^{2}+\mathrm{g}_{\mathrm{y}}{ }^{0}\right)^{0.5}
\end{align*}
$$

Here t is elapsed time ($\mathrm{t}=0$ corresponds to Eqs 8-13).

ANALYTICAL SOLUTION FOR ELLIPTIC ORBIT

The elliptic orbit may be defined by two parameters: large semi-axis, a, and eccentricity, e (see Fig. 1). Large semi-axis of the Earth's orbit is equal to 1 astronomic unit (a.u.), which is (Pitjeva and Standish, 2009; Luzum et al, 2011):

$$
\begin{equation*}
\mathrm{a}=1 \mathrm{a} . \mathrm{u} .=149.5978707 \times 10^{9} \mathrm{~m} \tag{23}
\end{equation*}
$$

Eccentricity of the elliptic orbit, e (~ 0.01671 for the Earth's orbit), is dimensionless parameter ranging from $\mathrm{e}=0$ (for exactly circular orbit) to $\mathrm{e} \approx 1$ (for ellipse reduced to straight line).

With known a and e, one may calculate other characteristics of orbit (see Fig. 1):

$$
\begin{align*}
& \mathrm{b}=\mathrm{a}\left(1-\mathrm{e}^{2}\right)^{0.5} \tag{24}\\
& \mathrm{r}_{\mathrm{a}}=\mathrm{a}(1+\mathrm{e}) \tag{25}\\
& \mathrm{r}_{\mathrm{p}}=\mathrm{a}(1-\mathrm{e}) \tag{26}
\end{align*}
$$

Here b is small semi-axis, r_{p} is perifocal radius (perihelion, minimum distance to the Sun), and r_{a} is apofocal radius (aphelion, maximum distance to the Sun).

Other useful relations:

$$
\begin{align*}
& \mathrm{e}=\left\{1-(\mathrm{b} / \mathrm{a})^{2}\right\}^{0.5}=\left\{\mathrm{r}_{\mathrm{a}}-\mathrm{r}_{\mathrm{p}}\right\} /\left\{\mathrm{r}_{\mathrm{a}}+\mathrm{r}_{\mathrm{p}}\right\} \tag{27}\\
& \mathrm{a}=\left(\mathrm{r}_{\mathrm{a}}+\mathrm{r}_{\mathrm{p}}\right) / 2 \tag{28}\\
& \mathrm{~b}=\left(\mathrm{r}_{\mathrm{a}} \mathrm{r}_{\mathrm{p}}\right)^{0.5} \tag{29}
\end{align*}
$$

The period of rotation around the Sun with respect to "fixed stars", i.e., sidereal year, τ_{s} (for the Earth: 31558150 s or 365 days, 6 hours, 9 minutes, and 10 seconds: Encyclopedia Britannica) is defined by third Kepler's law:

$$
\begin{equation*}
\tau_{\mathrm{s}}=2 \pi\left(\mathrm{a}^{3} / \mathrm{K}_{\odot}\right)^{0.5} \tag{30}
\end{equation*}
$$

As may be seen from Eq. (30), variety of elliptic orbits, which may be inscribed into circular orbit (applying parallel shift, see Fig. 2), all have equal periods of rotation around the Sun, independent of eccentricity.

Fig. 1 Elements of elliptic orbit (at eccentricity $\mathrm{e}=0.8$): \quad large semi-axis $\mathrm{a}=1$,
small semi-axis $b=0.6$,
apofocal radius $r_{a}=1.8$,
perifocal radius $r_{p}=0.2$.

Fig. 2 Family of orbits specified by equal large semi-axis and equal periods of rotation. To match positions of perihelion and aphelion, elliptic orbits were shifted to the right; thus position of Sun shifts to the right with eccentricity.

Orbital velocity may be obtained from energy balance, which gives relation

$$
\begin{equation*}
v^{2}=K_{\odot}\left\{2 / r-(1-e) / r_{p}\right\}=K_{\odot}\{2 / r-1 / a\} \tag{31}
\end{equation*}
$$

From Eq (31), velocity varies between minimum, v_{a} (in aphelion), and maximum, v_{p} (in perihelion):

$$
\begin{align*}
& v_{\mathrm{a}}{ }^{2}=K_{\odot}(1-e) / r_{a}=K_{\odot}\{(1-e) /(1+e)\} / a \tag{32}\\
& v_{p}{ }^{2}=K_{\odot}(1+e) / r_{p}=K_{\odot}\{(1+e) /(1-e)\} / a \tag{33}
\end{align*}
$$

Let us assume that the large semi axis coincides with "x" axis, the Sun is located in the right focus of ellipse, and its coordinates are $\mathrm{x}=0$ and $\mathrm{y}=0$ (see Fig. 1). In this case, the initial state $(t=0)$ may be defined by (again, assuming contra-clock rotation and, beginning from " 3 o'clock"):

$$
\begin{align*}
& \mathrm{x}_{\mathrm{o}}=\mathrm{r}_{\mathrm{p}}=\mathrm{a}(1-\mathrm{e}) \tag{34}\\
& \mathrm{y}_{\mathrm{o}}=0 \tag{35}\\
& \mathrm{v}_{\mathrm{xo}}=0 \tag{36}\\
& \mathrm{v}_{\mathrm{yo}}=\mathrm{v}_{\mathrm{p}}=\left\{\mathrm{K}_{\odot}(1+\mathrm{e}) / \mathrm{r}_{\mathrm{p}}\right\}^{0.5}=\left\{\mathrm{K}_{\odot}\{(1+\mathrm{e}) /(1-\mathrm{e})\} / \mathrm{a}\right\}^{0.5} \tag{37}\\
& \mathrm{~g}_{\mathrm{xo}}=-\mathrm{K}_{\odot} / \mathrm{r}_{\mathrm{p}}^{2}=-\mathrm{K}_{\odot} /\{\mathrm{a}(1-\mathrm{e})\}^{2} \\
& \mathrm{~g}_{\mathrm{yo}}=0 \tag{39}
\end{align*}
$$

In this case, coordinates of planet, velocity and its components, acceleration and its components are given by

$$
\begin{align*}
& \mathrm{x}=\mathrm{a} \times \cos (\mathrm{E})-\mathrm{ae} \tag{40}\\
& \mathrm{y}=\mathrm{b} \times \sin (\mathrm{E}) \tag{41}\\
& \mathrm{r}=\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{0.5}=\mathrm{a}\{1-\mathrm{e} \times \cos (\mathrm{E})\} \tag{42}\\
& \mathrm{v}_{\mathrm{x}}=-\mathrm{v}\{\mathrm{y} / \mathrm{b}\}=-\mathrm{v} \times \sin (\mathrm{E}) \tag{43}\\
& \mathrm{v}_{\mathrm{y}}=\mathrm{v}\{\mathrm{x} / \mathrm{a}+\mathrm{e}\}=\mathrm{v} \times \cos (\mathrm{E}) \tag{44}\\
& \mathrm{v}^{2}=\mathrm{v}_{\mathrm{x}}^{2}+\mathrm{v}_{\mathrm{y}}^{2}=\mathrm{K}_{\odot}\{2 / \mathrm{r}-1 / \mathrm{a}\}=\left\{\mathrm{K}_{\odot} / \mathrm{a}\right\}\{1+\mathrm{e} \times \cos (\mathrm{Z})\} /\{1-\mathrm{e} \times \cos (\mathrm{Z})\} \tag{45}\\
& \mathrm{g}_{\mathrm{x}}=-\mathrm{g} \times \mathrm{x} / \mathrm{r}=-\mathrm{g}(\cos (\mathrm{E})-\mathrm{e}) /\{1-\mathrm{ecos}(\mathrm{E})\} \tag{46}\\
& \mathrm{g}_{\mathrm{y}}=-\mathrm{g} \times \mathrm{y} / \mathrm{r}=-\mathrm{g}\{\mathrm{~b} / \mathrm{a}\} \sin (\mathrm{E}) /\{1-\mathrm{e} \cos (\mathrm{E})\} \tag{47}\\
& \mathrm{g}=\left(\mathrm{g}_{\mathrm{x}}^{2}+\mathrm{g}_{\mathrm{y}}{ }^{2}\right)^{0.5}=\mathrm{K}_{\odot} / \mathrm{r}^{2}=\mathrm{K} \odot /[\mathrm{a}\{1-\mathrm{e} \times \cos (\mathrm{E})\}]^{2} \tag{48}
\end{align*}
$$

Here E is intermediate variable (so called "eccentric anomaly"), which is related with time as

$$
\begin{equation*}
\mathrm{E}-\mathrm{e} \times \sin (\mathrm{E})=2 \pi \mathrm{t} / \tau_{\mathrm{s}} \tag{49}
\end{equation*}
$$

Here, as before, $\mathrm{t}=0$ corresponds initial state given by Eqs. (34-39). Eq. (49) can not be solved analytically with respect to E, and should be solved iteratively.

It should be noted that the real Sun has its own very complex trajectory with radius about 1 million of kilometers (mainly, due to influence of the Jupiter), and the analytical solutions, given above, are just approximations to reality. However, these analytical solutions are excellent tool for calibration of numerical methods.

NUMERICAL INTEGRATION

In general case, double integration of equations such as Eqs. (3, 4) is based on extrapolation of "current parameters" of state to "near future". "Current parameters" may be marked with subscript " 1 ". "New parameters", which should be guessed from current ones, may be marked with subscript " 2 ".

If the period of rotation τ_{s} (sidereal year) is known, it is convenient to express time increment $\Delta t=\mathrm{t}_{2}-\mathrm{t}_{1}$ as

$$
\begin{equation*}
\Delta \mathrm{t}=\tau_{\mathrm{s}} / \mathrm{N} \tag{50}
\end{equation*}
$$

Here N is total number of steps per rotation. If eccentricity of orbit ranges from 0 to 1 , the orbit is ellipse, and planet should return to initial $(t=0)$ position at Nth step of integration.

FIRST APPROACH INTEGRATION SCHEME

One may assume, that changes of acceleration during time step $\Delta t=t_{2}-t_{1}$ are negligible:

$$
\begin{align*}
& g_{x}\left(\text { from } t_{1} \text { to } t_{2}\right)=g_{x} \tag{51}\\
& g_{y}\left(\text { from } t_{1} \text { to } t_{2}\right)=g_{y 1} \tag{52}
\end{align*}
$$

Thus new values for the components of velocity may be found via integration of Eqs. $(51,52)$ from t_{1} to $\mathrm{t}_{2}=\mathrm{t}_{1}+\Delta \mathrm{t}$:

$$
\begin{align*}
& \mathrm{v}_{\mathrm{x} 2}=\mathrm{v}_{\mathrm{x} 1}+\mathrm{g}_{\mathrm{x} 1} \Delta \mathrm{t} \tag{53}\\
& \mathrm{v}_{\mathrm{y} 2}=\mathrm{v}_{\mathrm{y} 1}+\mathrm{g}_{\mathrm{y} 1} \Delta \mathrm{t} \tag{54}
\end{align*}
$$

Similarly, one may estimate new coordinates, and new distance to the Sun:

$$
\begin{align*}
& \mathrm{x}_{2}=\mathrm{x}_{1}+\mathrm{v}_{\mathrm{x} 1} \Delta \mathrm{t}+\mathrm{g}_{\mathrm{x} 1} \Delta \mathrm{t}^{2} / 2 \tag{55}\\
& \mathrm{y}_{2}=\mathrm{y}_{1}+\mathrm{v}_{\mathrm{y} 1} \Delta \mathrm{t}+\mathrm{g}_{\mathrm{y} 1} \Delta \mathrm{t}^{2} / 2 \tag{56}\\
& \mathrm{r}_{2}=\left(\mathrm{x}_{2}{ }^{2}+\mathrm{y}_{2}{ }^{2}\right)^{0.5} \tag{57}
\end{align*}
$$

Thus, new values for components of acceleration may be calculated from:

$$
\begin{align*}
& \mathrm{g}_{\mathrm{x} 2}=-\mathrm{g}_{2}\left\{\mathrm{x}_{2} / \mathrm{r}_{2}\right\}=-\mathrm{K}_{\odot}\left\{\mathrm{x}_{2} / \mathrm{r}_{2}{ }^{3}\right\} \tag{58}\\
& \mathrm{g}_{\mathrm{y} 2}=-\mathrm{g}_{2}\left\{\mathrm{y}_{2} / \mathrm{r}_{2}\right\}=-\mathrm{K}_{\odot}\left\{\mathrm{y}_{2} / \mathrm{r}_{2}{ }^{3}\right\} \tag{59}
\end{align*}
$$

And now, applying $\mathrm{x}_{1}=\mathrm{x}_{2}, \mathrm{y}_{1}=\mathrm{y}_{2}, \mathrm{v}_{\mathrm{x} 1}=\mathrm{v}_{\mathrm{x} 2}, \mathrm{v}_{\mathrm{y} 1}=\mathrm{v}_{\mathrm{y} 2}, \mathrm{~g}_{\mathrm{x} 1}=\mathrm{g}_{\mathrm{x} 2}, \mathrm{~g}_{\mathrm{y} 1}=\mathrm{g}_{\mathrm{y} 2}$, one may return to Eqs (53-59) to perform next step of integration.

The first approach is very uncertain and not applicable in the most of cases. As may be seen in Tab. 1, error is proportional to [t , years $]^{2}$, and inversely proportional to $[\mathrm{N}$, steps per year]. In the limit $\mathrm{e} \rightarrow 1$, velocity in perihelion, v_{p}, and thus length of step, $\mathrm{v}_{\mathrm{p}} \times \Delta \mathrm{t}$, approaches to infinity. Because of this, in the limit $\mathrm{e} \rightarrow 1$, error also approaches to infinity:

$$
\begin{equation*}
\text { Error, } \mathrm{km} \sim 3 \times 10^{10}\left\{1+\mathrm{e} /(1-\mathrm{e})^{2.5}\right\}[\mathrm{t} \text {, years }]^{2} /[\mathrm{N} \text {, steps per year }] \tag{60}
\end{equation*}
$$

Tab. 1. First approach: maximum error in coordinates, as $\left\{\left(\mathrm{x}-\mathrm{x}_{\text {exact }}\right)^{2}+\left(\mathrm{y}-\mathrm{y}_{\mathrm{exact}}\right)^{2}\right\}^{0.5}, \mathrm{~km}$. In square brackets: duration of calculations.
Analytical model: $\mathrm{a}=149597870.7 \mathrm{~km}$; 1 year (i.e. 1 rotation) $=31558150 \mathrm{~s}$.

N, steps per year	E		Max. error for 1 year		Max. error for 10 years		
100	0	219000000 km	$[\sim 0 \mathrm{~s}]$	516000000 km	$[\sim 0 \mathrm{~s}]$		
1000	0	27700000 km	$[\sim 0 \mathrm{~s}]$	338000000 km	$[\sim 0.3 \mathrm{~s}]$		
10000	0	2840000 km		235000000 km			
	0.1	3200000					
	0.2	3870000			$[\sim 1.8 \mathrm{~s}]$		
	0.3	5030000	$[\sim 0.3 \mathrm{~s}]$				
	0.4	7110000					
	0.5	11100000					
	0.6	20000000		27700000 km			
	0	284000 km		31500000			
	0.1	321000		38200000			
	0.2	387000		49500000			
	0.3	503000					
	0.4	711000	$[\sim 1.8 \mathrm{~s}]$	68700000			
	0.5	1110000		101000000			
	0.6	2010000					
	0.7	4440000					
	0.8	14100000					

Tab. 2. Second approach: maximum error in coordinates, as $\left\{\left(\mathrm{x}-\mathrm{x}_{\text {exact }}\right)^{2}+\left(\mathrm{y}-\mathrm{y}_{\text {exact }}\right)^{2}\right\}^{0.5}, \mathrm{~km}$. In square brackets: duration of calculations.
Analytical model: $\mathrm{a}=149597870.7 \mathrm{~km} ; 1$ year $=31558150 \mathrm{~s}$.

Tab. 3. Third approach: maximum error in coordinates, as $\left\{\left(\mathrm{x}-\mathrm{x}_{\mathrm{exact}}\right)^{2}+\left(\mathrm{y}-\mathrm{y}_{\mathrm{exact}}\right)^{2}\right\}^{0.5}, \mathrm{~km}$. Numbers in square brackets: duration of calculations.
Analytical model: $\mathrm{a}=149597870.7 \mathrm{~km}$; 1 year $=31558150 \mathrm{~s}$.

N, steps per year	e	Max. error for 1 year	Max. error for 10 years
100	$\begin{aligned} & \hline 0 \\ & 0.1 \\ & 0.2 \\ & 0.3 \\ & 0.4 \\ & 0.5 \\ & 0.6 \\ & 0.7 \\ & 0.8 \end{aligned}$	32.5 km 65.1 245 678 1830 $[\sim 0 \mathrm{~s}]$ 4820 6660 220000 21500000	307 km 650 2450 6770 18200 $[\sim 0 \mathrm{~s}]$ 47500 113000 2490000 155000000
1000	$\begin{aligned} & \hline 0 \\ & 0.1 \\ & 0.2 \\ & 0.3 \\ & 0.4 \\ & 0.5 \\ & 0.6 \\ & 0.7 \\ & 0.8 \\ & 0.9 \\ & 0.95 \end{aligned}$	0.00326 km 0.00651 0.0245 0.0680 0.185 0.504 $[\sim 0 \mathrm{~s}]$ 1.04 9.60 676 245000 55400000	0.0307 km 0.0649 0.245 0.680 1.85 $5.04 \quad[\sim 1 \mathrm{~s}]$ 10.4 93.9 6760 2470000 240000000
10000	$\begin{array}{\|l\|} \hline 0 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 0.95 \\ 0.98 \\ \hline \end{array}$	0.00000060 km 0.00000253 0.00000625 0.0000391 0.0000579 $0.0000203 \quad[\sim 1 \mathrm{~s}]$ 0.000144 0.000916 0.0665 22.2 5100 5720000	0.00000690 km 0.000639 0.000039 0.000243 0.000849 $0.00108 \quad[\sim 7.5 \mathrm{~s}]$ 0.00140 0.010 0.664 222 51000 29100000
100000	$\begin{array}{\|l\|} \hline 0 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 0.95 \\ 0.98 \\ 0.99 \\ \hline \end{array}$	0.0000038 km 0.0000123 0.0000516 0.0000387 0.0000538 0.0000558 $0.0000634 \quad[\sim 7.5 \mathrm{~s}]$ 0.0000410 0.000163 0.00269 0.506 553 105000	0.000044 0.000095 0.000486 0.000186 0.00295 0.00132 $0.00141 \quad[\sim 72 \mathrm{~s}]$ 0.00254 0.000703 0.0173 5.07 550 1040

SECOND APPROACH INTEGRATION SCHEME

Second approach is based on assumption that the acceleration changes linearly with time within the time step $\mathrm{t}_{2}-\mathrm{t}_{1}=\Delta \mathrm{t}$:

$$
\begin{align*}
& g_{x}\left(\text { from } t_{1} \text { to } t_{2}\right)=g_{x 1}+b_{x 1} \times\left(t-t_{1}\right) \tag{61}\\
& g_{y}\left(\text { from } t_{1} \text { to } t_{2}\right)=g_{y 1}+b_{y 1} \times\left(t-t_{1}\right) \tag{62}
\end{align*}
$$

Here $b_{x 1}$ and $b_{y 1}$ are some unknown coefficients. Thus, the components of acceleration at the moment of time t_{2} are related with these at t_{1} as:

$$
\begin{align*}
& \mathrm{g}_{\mathrm{x} 2}=\mathrm{g}_{\mathrm{x} 1}+\mathrm{b}_{\mathrm{x} 1} \times \Delta \mathrm{t} \tag{63}\\
& \mathrm{~g}_{\mathrm{y} 2}=\mathrm{g}_{\mathrm{y} 1}+\mathrm{b}_{\mathrm{y} 1} \times \Delta \mathrm{t} \tag{64}
\end{align*}
$$

New coordinates and new distance to the Sun may be obtained via double integration of Eqs (61, 62) from t_{1} to $t_{2}=t_{1}+\Delta t$, with coefficients $b_{x 1}$ and $b_{y 1}$ substituted from Eqs $(63,64)$

$$
\begin{align*}
\mathrm{x}_{2}=\mathrm{x}_{1}+\mathrm{v}_{\mathrm{x} 1} \Delta \mathrm{t}+(1 / 2) \mathrm{g}_{\mathrm{x} 1} \Delta \mathrm{t}^{2}+ & (1 / 6) \mathrm{b}_{\mathrm{x} 1} \Delta \mathrm{t}^{3}= \\
& =\mathrm{x}_{1}+\mathrm{v}_{\mathrm{x} 1} \Delta \mathrm{t}+(1 / 6)\left\{2 \mathrm{~g}_{\mathrm{x} 1}+\mathrm{g}_{\mathrm{x} 2}\right) \Delta \mathrm{t}^{2} \tag{65}\\
\mathrm{y}_{2}=\mathrm{y}_{1}+\mathrm{v}_{\mathrm{y} 1} \Delta \mathrm{t}+(1 / 2) \mathrm{g}_{\mathrm{y} 1} \Delta \mathrm{t}^{2} & +(1 / 6) \mathrm{b}_{\mathrm{y} 1} \Delta \mathrm{t}^{3}= \tag{67}\\
& =\mathrm{y}_{1}+\mathrm{v}_{\mathrm{y} 1} \Delta \mathrm{t}+(1 / 6)\left\{2 \mathrm{~g}_{\mathrm{y} 1}+\mathrm{g}_{\mathrm{y} 2}\right) \Delta \mathrm{t}^{2} \tag{66}
\end{align*}
$$

At first iteration, the values $g_{x 2}$ and $g_{y 2}$ should be estimated as $g_{x 2}=g_{x 1}$ and $g_{y 2}=g_{y 1}$. With estimates for $\mathrm{x}_{2}, \mathrm{y}_{2}$ and r_{2}, one may obtain closer estimates for $\mathrm{g}_{\mathrm{x} 2}$ and $\mathrm{g}_{\mathrm{y} 2}$:

$$
\begin{align*}
& \mathrm{g}_{2}=\mathrm{K}_{\odot} / \mathrm{r}_{2}{ }^{2} \tag{68}\\
& \mathrm{~g}_{\mathrm{x} 2}=-\mathrm{g}_{2}\left\{\mathrm{x}_{2} / \mathrm{r}_{2}\right\}=-\mathrm{K}_{\odot}\left\{\mathrm{x}_{2} / \mathrm{r}_{2}{ }^{3}\right\} \tag{69}\\
& \mathrm{g}_{\mathrm{y} 2}=-\mathrm{g}_{2}\left\{\mathrm{y}_{2} / \mathrm{r}_{2}\right\}=-\mathrm{K}_{\odot}\left\{\mathrm{y}_{2} / \mathrm{r}_{2}{ }^{3}\right\} \tag{70}
\end{align*}
$$

Now, with new values for $\mathrm{g}_{\mathrm{x} 2}$ and $\mathrm{g}_{\mathrm{y} 2}$, one may return to Eqs (65-70) to obtain more close estimates. Within the present scheme, one re-iteration is enough, whereas second and third reiterations give no improvement. New values for the components of velocity may be then obtained via single integration of Eqs $(61,62)$ from t_{1} to $t_{2}=t_{1}+\Delta t$:

$$
\begin{align*}
& \mathrm{v}_{\mathrm{x} 2}=\mathrm{v}_{\mathrm{x} 1}+\mathrm{g}_{\mathrm{x} 1} \Delta \mathrm{t}+(1 / 2) \mathrm{b}_{\mathrm{x} 1} \Delta \mathrm{t}^{2}= \\
& =\begin{array}{c}
=\mathrm{v}_{\mathrm{x} 1}+(1 / 2)\left\{\mathrm{g}_{\mathrm{x} 1}+\mathrm{g}_{\mathrm{x} 2}\right\} \Delta \mathrm{t}
\end{array} \tag{71}\\
& \begin{array}{r}
\mathrm{v}_{\mathrm{y} 2}=\mathrm{v}_{\mathrm{y} 1}+\mathrm{g}_{\mathrm{y} 1} \Delta \mathrm{t}+(1 / 2) \mathrm{b}_{\mathrm{y} 1} \Delta \mathrm{t}^{2}= \\
= \\
=\mathrm{v}_{\mathrm{y} 1}+(1 / 2)\left\{\mathrm{g}_{\mathrm{y} 1}+\mathrm{g}_{\mathrm{y} 2}\right\} \Delta \mathrm{t}
\end{array}
\end{align*}
$$

Now, applying $x_{1}=x_{2}, y_{1}=y_{2}, v_{x 1}=v_{x 2}, v_{y 1}=v_{y 2}, a_{x 1}=a_{x}$, and $a_{y 1}=a_{y}$, one may return to Eqs. (65-72), and perform next step of integration. As may be seen from Tab. 2, accuracy of the second approach is ~ 3-6 orders better than for the first approach (see Tab. 1). Error is directly proportional to time (years), and inversely proportional to N^{2}. Like in case of first approach, in the limit $\mathrm{e} \rightarrow 1$, error increases to infinity:

$$
\begin{equation*}
\text { Error, } \mathrm{km} \sim 7 \times 10^{9}\{(1+\mathrm{e}) /(1-\mathrm{e})\}^{4}[\mathrm{t}, \text { years }] /[\mathrm{N}, \text { steps per year }]^{2} \tag{73}
\end{equation*}
$$

THIRD APPROACH INTEGRATION SCHEME

Third approach is based on assumption that the acceleration changes with time (within the time step $\Delta \mathrm{t}=\mathrm{t}_{2}-\mathrm{t}_{1}$) along with parabola:

$$
\begin{align*}
& \mathrm{g}_{\mathrm{x}}\left(\text { from } \mathrm{t}_{1} \text { to } \mathrm{t}_{2}\right)=\mathrm{g}_{\mathrm{x} 1}+\mathrm{b}_{\mathrm{x}} \times\left\{\mathrm{t}-\mathrm{t}_{1}\right\}+\mathrm{c}_{\mathrm{x} 1} \times\left\{\mathrm{t}-\mathrm{t}_{1}\right\}^{2} \tag{74}\\
& \left.\mathrm{~g}_{\mathrm{y}} \text { (from } \mathrm{t}_{1} \text { to } \mathrm{t}_{2}\right)=\mathrm{g}_{\mathrm{y} 1}+\mathrm{b}_{\mathrm{y} 1} \times\left\{\mathrm{t}-\mathrm{t}_{1}\right\}+\mathrm{c}_{\mathrm{x} 1} \times\left\{\mathrm{t}-\mathrm{t}_{1}\right\}^{2} \tag{75}
\end{align*}
$$

Here $\mathrm{b}_{\mathrm{x} 1}, \mathrm{~b}_{\mathrm{y} 1}, \mathrm{c}_{\mathrm{x} 1}$, and $\mathrm{c}_{\mathrm{y} 1}$ are some unknown coefficients.
Thus, the components of acceleration at time t_{2} are related with these at t_{1} as:

$$
\begin{align*}
& g_{\mathrm{x} 2}=\mathrm{g}_{\mathrm{x} 1}+\mathrm{b}_{\mathrm{x} 1} \times \Delta \mathrm{t}+\mathrm{c}_{\mathrm{x} 1} \times \Delta \mathrm{t}^{2} \tag{76}\\
& \mathrm{~g}_{\mathrm{y} 2}=\mathrm{g}_{\mathrm{y} 1}+\mathrm{b}_{\mathrm{y} 1} \times \Delta \mathrm{t}+\mathrm{c}_{\mathrm{y} 1} \times \Delta \mathrm{t}^{2} \tag{77}
\end{align*}
$$

To obtain coefficients b and c of parabola, it is necessary to know, at least, 3 points. Therefore, in addition to times t_{1} and t_{2}, it is necessary to consider also the "mid point", at $t_{m}=\left(t_{1}+t_{2}\right) / 2$. In accordance with Eqs $(74,75)$, components of acceleration in the midpoint are:

$$
\begin{align*}
& \mathrm{g}_{\mathrm{xm}}=\mathrm{g}_{\mathrm{x} 1}+\mathrm{b}_{\mathrm{x} 1} \times\{\Delta \mathrm{t} / 2\}+\mathrm{c}_{\mathrm{x} 1} \times\{\Delta \mathrm{t} / 2\}^{2}{ }^{\mathrm{g}_{\mathrm{ym}}=\mathrm{g}_{\mathrm{y} 1}+\mathrm{b}_{\mathrm{y} 1} \times\{\Delta \mathrm{t} / 2\}+\mathrm{c}_{\mathrm{y} 1} \times\{\Delta \mathrm{t} / 2\}^{2}} \tag{78}
\end{align*}
$$

Coordinates of midpoint x_{m} and y_{m}, and distance from midpoint to the Sun r_{m} may be estimated via double integration of Eqs $(74,75)$ from $t=t_{1}$ to $t=t_{1}+(\Delta t / 2)$, with coefficients $b_{x 1}, b_{y 1}, c_{x 1}$ and $\mathrm{c}_{\mathrm{y} 1}$ substituted from Eqs (76-79):

$$
\begin{array}{r}
\mathrm{x}_{\mathrm{m}}=\mathrm{x}_{1}+\left\{\mathrm{v}_{\mathrm{x} 1} / 2\right\} \Delta \mathrm{t}+\left\{\mathrm{g}_{\mathrm{x} 1} / 8\right\} \Delta \mathrm{t}^{2}+\left\{\mathrm{b}_{\mathrm{x} 1} / 48\right\} \Delta \mathrm{t}^{3}+\left\{\mathrm{c}_{\mathrm{x} 1} / 192\right\} \Delta \mathrm{t}^{4}= \\
=\mathrm{x}_{1}+\left\{\mathrm{v}_{\mathrm{x} 1} / 2\right\} \Delta \mathrm{t}+\{1 / 96\}\left\{7 \mathrm{~g}_{\mathrm{x} 1}+6 \mathrm{~g}_{\mathrm{xm}}-\mathrm{g}_{\mathrm{x} 2}\right\} \Delta \mathrm{t}^{2} \\
\mathrm{y}_{\mathrm{m}}=\mathrm{y}_{1}+\left\{\mathrm{v}_{\mathrm{y} 1} / 2\right\} \Delta \mathrm{t}+\left\{\mathrm{g}_{\mathrm{y} 1} / 8\right\} \Delta \mathrm{t}^{2}+\left\{\mathrm{b}_{\mathrm{y} 1} / 48\right\} \Delta \mathrm{t}^{3}+\left\{\mathrm{c}_{\mathrm{y} 1} / 192\right\} \Delta \mathrm{t}^{4}= \\
\quad=\mathrm{y}_{1}+\left\{\mathrm{v}_{\mathrm{y} 1} / 2\right\} \Delta \mathrm{t}+\{1 / 96\}\left\{7 \mathrm{~g}_{\mathrm{y} 1}+6 \mathrm{~g}_{\mathrm{ym}}-\mathrm{g}_{\mathrm{y} 2}\right\} \Delta \mathrm{t}^{2}
\end{array}
$$

At first iteration, the values $g_{x m}, g_{y m}, g_{x 2}$ and $g_{y 2}$ in Eqs (80, 81) should be estimated as $g_{x m}=g_{x 1}, g_{y m}=g_{y 1}, g_{x 2}=g_{x 1}$ and $g_{y 2}=g_{y 1}$. Then, with estimates for x_{m} and y_{m}, the components of acceleration $g_{x m}, g_{y m}$ at midpoint may be estimated from:

$$
\begin{align*}
& \mathrm{gxm}_{\mathrm{xm}}=-\mathrm{K}_{\odot}\left\{\mathrm{x}_{\mathrm{m}} / \mathrm{r}_{\mathrm{m}}{ }^{3}\right\} \tag{83}\\
& \mathrm{g}_{\mathrm{ym}}=-\mathrm{K}_{\odot}\left\{\mathrm{y}_{\mathrm{m}} / \mathrm{r}_{\mathrm{m}}{ }^{3}\right\} \tag{84}
\end{align*}
$$

Similarly, new coordinates, x_{2} and y_{2}, and new distance to the Sun, r_{2}, may be calculated from:

$$
\begin{align*}
\mathrm{x}_{2}=\mathrm{x}_{1}+\mathrm{v}_{\mathrm{x} 1} \Delta \mathrm{t}+(1 / 2) \mathrm{g}_{\mathrm{x} 1} \Delta \mathrm{t}^{2} & +(1 / 6) \mathrm{b}_{\mathrm{x} 1} \Delta \mathrm{t}^{3}+(1 / 12) \mathrm{c}_{\mathrm{x} 1} \Delta \mathrm{t}^{4}= \\
& =\mathrm{x}_{1}+\mathrm{v}_{\mathrm{x} 1} \Delta \mathrm{t}+(1 / 6)\left\{\mathrm{g}_{\mathrm{x} 1}+2 \mathrm{~g}_{\mathrm{xm}}\right\} \Delta \mathrm{t}^{2} \tag{85}\\
\mathrm{y}_{2}=\mathrm{y}_{1}+\mathrm{v}_{\mathrm{y} 1} \Delta \mathrm{t}+(1 / 2) \mathrm{g}_{\mathrm{y} 1} \Delta \mathrm{t}^{2} & +(1 / 6) \mathrm{b}_{\mathrm{y} 1} \Delta \mathrm{t}^{3}+(1 / 12) \mathrm{c}_{\mathrm{y} 1} \Delta \mathrm{t}^{4}= \\
& =\mathrm{y}_{1}+\mathrm{v}_{\mathrm{y} 1} \Delta \mathrm{t}+(1 / 6)\left\{\mathrm{g}_{\mathrm{y} 1}+2 \mathrm{~g}_{\mathrm{ym}}\right) \Delta \mathrm{t}^{2} \tag{86}
\end{align*}
$$

With these values, new components of acceleration may be found from:

$$
\begin{align*}
& \mathrm{g}_{\mathrm{x} 2}=-\mathrm{K}_{\odot}\left\{\mathrm{x}_{2} / \mathrm{r}_{2}{ }^{3}\right\} \tag{88}\\
& \mathrm{g}_{\mathrm{y} 2}=-\mathrm{K}_{\odot}\left\{\mathrm{y}_{2} / \mathrm{r}_{2}{ }^{3}\right\} \tag{89}
\end{align*}
$$

Now, with estimates for $g_{x m}, g_{y m}, g_{x 2}$ and $g_{y 2}$, it is necessary to perform re-iteration, beginning from Eq. (80), in order to obtain more close values. Within the present scheme, two re-iterations are enough, whereas third and forth re-iterations give no improvement.

New components of velocity may be then calculated as:

$$
\begin{align*}
& \mathrm{v}_{\mathrm{x} 2}=\mathrm{v}_{\mathrm{x} 1}+\mathrm{g}_{\mathrm{x} 1} \Delta \mathrm{t}+(1 / 2) \mathrm{b}_{\mathrm{x} 1} \Delta \mathrm{t}^{2}+(1 / 3) \mathrm{c}_{\mathrm{x} 1} \Delta \mathrm{t}^{3}= \\
&=\mathrm{v}_{\mathrm{x} 1}+(1 / 6)\left\{\mathrm{g}_{\mathrm{x} 1}+4 \mathrm{~g}_{\mathrm{xm}}+\mathrm{g}_{\mathrm{x} 2}\right\} \Delta \mathrm{t} \tag{90}\\
& \mathrm{v}_{\mathrm{y} 2}=\mathrm{v}_{\mathrm{y} 1}+\mathrm{g}_{\mathrm{y} 1} \Delta \mathrm{t}+(1 / 2) \mathrm{b}_{\mathrm{y} 1} \Delta \mathrm{t}^{2}+(1 / 3) \mathrm{c}_{\mathrm{y} 1} \Delta \mathrm{t}^{\prime}= \\
&=\mathrm{v}_{\mathrm{y} 1}+(1 / 6)\left\{\mathrm{g}_{\mathrm{y} 1}+4 \mathrm{~g}_{\mathrm{ym}}+\mathrm{g}_{\mathrm{y} 2}\right\} \Delta \mathrm{t} \tag{91}
\end{align*}
$$

Now, applying $\mathrm{x}_{1}=\mathrm{x}_{2}, \mathrm{y}_{1}=\mathrm{y}_{2}, \mathrm{v}_{\mathrm{x} 1}=\mathrm{v}_{\mathrm{x} 2}, \mathrm{v}_{\mathrm{y} 1}=\mathrm{v}_{\mathrm{y} 2}, \mathrm{~g}_{\mathrm{x} 1}=\mathrm{g}_{\mathrm{x} 2}$, and $\mathrm{g}_{\mathrm{y} 1}=\mathrm{g}_{\mathrm{y} 2}, \mathrm{~g}_{\mathrm{xm}}=\mathrm{g}_{\mathrm{x} 2}$, and $\mathrm{g}_{\mathrm{ym}}=$ $\mathrm{g}_{\mathrm{y} 2}$, one may return to Eqs. (80-91), and perform next step of integration.
As may be seen from Tab. 3, accuracy of the third approach is ~ 3-6 orders better than for the second approach (see Tab. 2). Error is directly proportional to time (years), inversely proportional to N^{4}. Like in case of first and second approaches, in the limit $\mathrm{e} \rightarrow 1$, error increases to infinity. Due to significant contribution from rounding errors, uncertainty oscillates with eccentricity and increases with N at $\mathrm{N}>1 / 10000$ at low eccentricities. In general, error is consistent with relation:

$$
\begin{align*}
& \text { Error, km } \sim 3 \times 10^{9} \times[\mathrm{t} \text {, years }] /\left\{(1-\mathrm{e})^{8}[\mathrm{~N} \text {, steps per year }]^{4}\right\}+ \\
& +3 \times 10^{-11} \times[\mathrm{t} \text {, years }] \times[\mathrm{N} \text {, steps per year }] \times\{1+50 \times \mathrm{e}\} \tag{92}
\end{align*}
$$

Note that the second term in Eq. (92) reflects the rounding error for calculations with double accuracy (i.e. with 16 digits).

CONCLUDING REMARKS

Even with time step $1 / 1000$ of rotation ("year"), third approach is efficient method for calculation of planetary orbits. However, for the orbits of comets, third approach is applicable solely with time step $1 / 1000000$ of rotation and smaller. In general, third approach integration scheme is almost exact method for majority of applications.

REFERENCES

Balk, M.B. (1965) Elementi dinamiki kosmicheskogo poleta (Elements of dynamics of cosmic fly, in Russian). Moskow, "Nauka". (http://pskgu.ru/ebooks/astro3.html)

Encyclopedia Britannica. Sidereal year.
(http://global.britannica.com/EBchecked/topic/543032/sidereal-year)
Luzum B., Capitaine N., Fienga A., Folkner W., Fukushima T., Hilton J., Honenkerk C., Krasinsky G., Petit G., Pitjeva E., Soffel M., Wallace P. (2011) The IAU system of astronomical constants: the report of IAU working group on numerical standards for Fundamental Astronomy. Celect. Mech. Dyn. Astr. 110, 293-304. (http://www.sai.msu.ru/neb/rw/CelMech110.pdf)

Mohr P.J., Taylor B.N., Newell D.B. (2012) CODATA recommended values of the fundamental physical constants: 2010. Rev. Modern Phys. 84, 1527-1579.
(http://physics.nist.gov/cuu/pdf/RevModPhysCODATA2010.pdf)
Pitjeva E.V., Standish E.M. (2009) Proposal for masses of the three larges asteroids and the Moon-Earth mass ratio and the Astronomic Unit. Celect. Mech. Dyn. Astr. 103, 365-372.

[^0]: ${ }^{1}$ with insignificant corrections from 15.06.2015 and 23.11.2015

