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ABSTRACT 
 

Paper presents Gibbs theory of capillarity and some estimates for “wetting pressure”, i.e., 

hypothetical repulsive force between solid particles induced by wetting of interfaces. 

  

 

INTRODUCTION    
 

Capillarity (or capillary action) is elevation or depression of liquids in capillaries, in slits, 

and in porous media. There are two concepts of interfacial forces: Laplace approach of “surface 

tension”, and Gibbs approach of “surface energy”. It is often claimed that these terms are 

equivalent (“surface tension”, N/m = “surface energy”, J/m
2
). However, this statement leads to 

numerous contradictions (e.g., see Kaptay, 2011). In spite of this, both approaches coexist in 

scientific literature even today, with varying prevalence in numerous applications, such as 

solubility and melting of dispersed substances, nucleation and growth of particles, cloud 

formation, foam and emulsion stability, etc, etc, etc. Apparent advantage of Laplace approach is 

consistence with experimental data on capillary elevation. In present study, in order to equate 

rank of two contradicting approaches, the theory of capillarity was constructed on basis of Gibbs 

approach. In addition, paper considers relevancy of “wetting pressure”, i.e., hypothetical 

repulsive force between solid particles, induced by wetting of interfaces.  

 

GIBBS THEORY OF CAPILLARITY 
 

The general Gibbs assumption is that the free energy of liquid droplet or solid particle is 

defined by arithmetic mean free energy of atoms or molecules of dispersed substance. Thus, the 

excess free energy of the dispersed substance is: 

 

Gex = G – Go = [Esurf , J/mol]         (1) 

 

Here G is molar chemical potential of liquid droplet or solid particle, Go is the same for large 

volume of solid or liquid, Esurf is molar surface energy of solid particles or liquid droplets: 

 

Esurf = ω×S×M = [ω, J/m
2
]×[S, m

2
/g]×[M, g/mol]     (2) 

 

Here [ω, J/m
2
] is specific surface energy of condensed substance (e.g., at 25

o
C, it is 0.072 J/m

2
 

for air-water interface, and 0.465 J/m
2
 for air-mercury interface), [S, m

2
/g] is specific surface 

area of liquid droplet or solid particle, and [M, g/mol] is molar weight of dispersed substance. 

Eqs. (1, 2) is Gibbs theory of capillarity in compact form, and all capillarity relations may 

be deduced directly from these equations.  
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The excess free energy Gex = G – Go may be expressed as: 

 

Gex = G – Go = RTΔln(α)  =  RTln(f/fo)  or  RTln(L/Lo)    (3) 

 

Here α is “chemical reactivity” of substance, f is fugacity (≈ vapor pressure) above liquid 

droplets, L is solubility (or solubility product) of solid particles, fo and Lo are the same properties 

for the bulk substances, R is gas constant (= 8.3144 J/mol
o
K), and T is absolute temperature 

(
o
K). Thus, “chemical reactivity” of substance increases with degree of dispersion as:  

 

Δln(α) = ω×S×M/RT         (4) 

 

Fig. 1 shows data from Stöber 

(1967) on solubility of quartz at 25
o
C in 

0.155 M NaCl + 0.012 M NaHCO3 (pH = 

8.4). Solid curve in Fig. 1 is: 

 

L = Lo×exp{0.00552×[S, m
2
/g]}   (5)

     

Here Lo = 0.18 mM is solubility of large 

quartz crystals. From these data, surface 

energy of quartz-water interface is 

0.00552×RT/M = 0.228 J/m
2
. Note here that 

in accordance with Laplace approach, right 

side of Eq. (4) should be multiplied by the 

factor 2/3 (for spherical particles), and 

Laplace’s surface tension of quartz in water 

is 0.342 N/m. However, there is no data to 

judge there is the truth. 

Radius of solid particle or liquid 

droplet is related with specific surface area 

S and density ρ of substance as: 

 

 rsph = 3/ρS             (6) or 

 

rsph, mm = 0.003/{[ρ, g/cm
3
]×[S, m

2
/g]}      (6a) 

 

Note that Eq. (6) is valid also for cubic particle (in this case, rsph is a half of side of cube). Thus, 

for isometric droplets or particles, Eq. (4) may be rewritten as: 

  

Δln(α) = (3ω/rsph)×{M/ρRT}        (7) or 

 

Δln(α) = 1.21×10
-6

×[ω, J/m
2
]×{[M, g/mol]/[ρ, g/cm

3
]}/[rsph, mm]   (7a) 

 

Note here that the Laplace approach gives factor 2 instead of 3 in Eq. (7). 

Radius of cylindrical body is related with specific surface area and density as: 

 

 rcyl = 2/ρS          (8) or 

 

[rcyl, mm] = 0.002/{[ρ, g/cm
3
]×[S, m

2
/g]}      (8a) 

 

Note that Eq. (8) is valid for quadrate-based prism (in this case, rcyl is semi-thickness of prism).  
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Fig. 1 Solubility of quartz samples with 

different specific surface area in aqueous 

solution. Data from Stöber (1967). Solid 
curve: Eq. (5). 
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So on, “reactivity” of cylindrical body may be calculated from Eqs. (4) and (8): 

 

 Δln(α) = (2ω/rcyl)×{M/ρRT}        (9) or 

 

Δln(α) = 0.807×10
-6

×[ω, J/m
2
]×{[M, g/mol]/[ρ, g/cm

3
]}/[rcyl , mm]  (9a) 

 

Semi-thickness of flat body is related with specific surface area as: 

 

rfl = 1/ρS          (10) or 

 

[rfl, mm] = 0.001/{[ρ, g/cm
3
]×[S, m

2
/g]}      (10a) 

 

Thus, “reactivity” of flat body may be calculated from Eqs. (4) and (10): 

 

 Δln(α) = (ω/rfl)×{M/ρRT}        (11) or 

 

Δln(α) = 0.403×10
-6

×[ω , J/m
2
]×{[M, g/mol]/[ρ, g/cm

3
]}/[rfl , mm]  (11a) 

 

In general case, in accordance with Gibbs approach, solubility of ellipsoid (or parallelepiped) 

particles may be calculated from: 

 

 Δln(α) = ln(L/Lo) = ω×(1/rx + 1/ry + 1/rz)×{Vm/RT}     (12) 

 

Here rx, ry and rz are semi-axes of ellipsoid (or parallelepiped), and Vm = M/ρ is molar volume of 

substance.  

The “reactivity” of liquid above air-liquid interface decreases with altitude in accordance 

with Boltzmann law: 

 

Δln(α) = ln(f/fo) = – MgΔh/RT (13)  

 

Here f is vapor pressure at altitude Δh, M is molar 

weight of liquid, and g is acceleration of gravity 

(9.80665 N/kg).  

Because the perpetuum mobile is impossible 

(see Fig. 2), capillary elevation in cylindrical tube 

may be found from Eqs. (9) and (13): 

 

 Δh = – 2ωl/s /ρgrcyl   (14) 

 

Here ωl/s is “apparent” surface energy of liquid at 

interface with solid, which may be defined as a 

difference between total surface energy of solid-

liquid interface and apparent surface energy of solid 

in contact with liquid:  

 

ωl/s = ωtot – ωs/l   (15) 

 

In the absence of interaction between solid and liquid, ωtot is simply a sum of surface energies of 

air-solid and air-liquid interfaces, ωtot = ωliquid + ωglass (note here that air-substance interface is 

almost identical to vacuum-substance interface). In such a case, “apparent” surface energy of 

liquid in contact with solid is equal to surface energy of air-liquid interface: ωl/s  = ωliquid.  

v
a
p

o
r

liquid

Fig. 2 Model of perpetuum mobile. 
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Consequently, applying surface energy of mercury ωHg = 0.465 J/m
2
, density of mercury, 

ρHg = 13.534 g/cm
3
, and g = 9.80665 N/kg, elevation of mercury in glass capillary may be 

estimated from: 

 

 Δh, mm Hg = – 7.01/[rcyl , mm]       (16) 

 

As may be seen, the sign of elevation for mercury is negative, i.e., it is depression. In fact, there 

is distinctive interaction between mercury and glass, and “apparent” surface energy of mercury 

in contact with glass decreases. 

In Fig. 3 and Tab. 1, the data from Lord Charles Cavendish (as given by Young, 1805) 

are shown. It should be noted that central depression (which was measured) underestimates the 

overall effect. In large tubes, central depression (or elevation) fast approaches to zero with radius 

of tube, whereas marginal depression (or elevation) approaches to constant (see dashed curve in 

Fig. 3). For fine capillaries, this difference is negligible. Solid curve in Fig. 3 is that calculated 

by Young (1805) for “mean depression”: 

 

Δh, mm Hg = – 4.84/[rcyl , mm]       (17)  

 

Thus, “apparent” surface energy of mercury in contact with glass decreases from 0.465 J/m
2
 

down to ωl/s ≈ 0.465×(–4.84)/(–7.01) = 0.321 J/m
2
. Because each bond has two ends, similar 

depression in surface energy (~ 0.144 J/m
2
) should be expected for glass in contact with 

mercury. Consequently, energy of interaction between glass and mercury is ~ 0.288 J/m
2
.  

  

Tab. 1 Depression of mercury in glass tubes.  

Data from Lord Charles Cavendish  

(as given by Young, 1805).  

Recalculated, applying 1 Inch = 25.4 mm.  

Radius of tube 

Inch                mm 

Elevation 

Inch                   mm 

0.3                 7.62 –0.005             –0.127 

0.25               6.35 –0.007             –0.178 

0.2                 5.08 –0.015             –0.381 

0.175             4.445 –0.025             –0.635 

0.15               3.81 –0.036             –0.914 

0.125             3.175 –0.05               –1.27 

0.1                 2.54 –0.067             –1.702 

0.075             1.905 –0.092             –2.337 

0.05               1.27 –0.14               –3.556 

 

 

 

 

 

Similarly, in the absence of interaction between water and walls of tube, elevation of 

water should be consistent with (see Eq. 14; ωw = 0.072 J/m
2
, ρw = 0.997 g/cm

3
): 

 

Δh, mm H2O = – 14.73/[rcyl , mm]       (18) 

 

In fact, the elevation of water in glass tubes is positive (see Fig. 4 and Tab 2): 

 

 Δh, mm H2O = 13.6/[rcyl , mm]       (19) 

Fig. 3. Central depression of mercury in 

glass tubes. Data from Lord Charles 

Cavendish (as given by Young, 1805).  

Solid and dashed curves: mean and marginal 

depressions, as calculated by Young (1805). 
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Thus, “apparent” surface energy of water in contact with glass changes its sign, but its absolute 

value remains approximately the same: ωw/s ≈ 0.072×13.6/(–14.73) = – 0.0665 J/m
2
.  

In contact of water with… water, i.e., at complete wetting, apparent surface energy is 

zero. Thus, change from 0.072 down to – 0.0665 J/m
2
 is “over-wetting”, whereas energy of 

interaction between glass and water is ~ 2×(0.072+0.0665) = 0.277 J/m
2
. From energy of 

hydrogen bond (~ 25 kJ per mole of bonds), total number of hydrogen bonds between glass and 

water is ~ 0.277/25000 = 11.08×10
-6

 mol/m
2
 (= number of water molecules in the layer with 

thickness ~ 2 Å).   

 

Tab. 2 Elevation of water in glass tubes.  

Data from Weitbrecht (1736).  

Recalculated, applying 1 Lin = 2.54 mm. 

Radius of tube 

Lin               mm 

Elevation 

Lin               mm 

0.4                1.016 5.3                13.46 

0.3                0.762 7.1                18.03 

0.3                0.762 7.2                18.29 

0.25              0.635 8.5                21.59 

0.25              0.635 9.2                23.37 

0.225            0.5715 9.5                24.13 

0.2                0.508 9.2                23.37 

0.125            0.3175 17.2              43.69 

 

 

 

As may be found from Eqs. (11, 13), elevation of liquid in the slit between two flat 

surfaces is:   

 

Δh = – ωw/s /ρgrslit         (20) 

 

Here rslit is a half of distance between two flat surfaces. Thus, applying the “apparent” surface 

energy of water in contact with glass, ωw/s = – 0.0665 J/m
2
 (from data in Fig. 4), ρw = 0.997 

g/cm
3
, and g = 9.80665 N/kg, one may estimate elevation of water in the slit between two flat 

glass surfaces: 

 

Δh, mm H2O = 6.8/[rslit , mm]     (21) 

 

 As may be seen in Fig. 5, Eq. (21) is 

consistent with observations.  
 

 

Tab. 3 Elevation of water in slit between two 

flat glass surfaces. Data from Monge (1787). 

Recalculated, applying 1 Ligne =2.2558 mm 

Half of distance  

between the flat  

glass surfaces 

Ligne            mm 

Elevation 

 

 

Ligne              mm 

2/33              0.1367 15.5                35.0 

2/49              0.0921 33.25              75.0 

1/56              0.0403 74                 166.9 
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Fig. 5 Elevation of water in slit between 

two flat glass surfaces. Data from Monge 
(1787). Solid line: Eq. (21). 
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Fig. 4 Elevation of water in glass tubes. 

Data from Weitbrecht (1736).  

Solid curve: Eq. (19) 



CAPILLARY ACTION         Yellow zone, hypothetical: ideas 

 

15 

 

Elevation of water in porous medium 

is somewhat different from that in tubes and 

slits, because the porous medium acts as a 

system of capillaries of variable sizes. Above 

water-saturated zone, water is accumulated in 

contacts of grains, where the “capillary size” 

approaches to zero. In result, the intermediate 

“fringe” zone, where the saturation of pore 

space with water decreases from 100 % to 

zero, is extended upward to infinity.    

As may be found from Eqs. (4) and 

(13), capillary elevation of water in porous 

medium is defined by: 

 

Δh = – ωw/s×Sw/g  = 

 

= – ωw/s×Ss×{ρs/ρwg}×{(1–θ)/θ}  = 

 

= – {3ωw/s /ρwgrs}×{(1–θ)/θ}        (22) 

 

Here Sw is specific surface area of water in porous medium, Ss is specific surface area of solid, ρs 

is density of solid particles, θ is porosity, and rs is radius of solid particles.  

Fig. 6 and Tab. 4 show the data from Schroth et al (1996) on capillary elevation of water 

in sand columns. Solid curve in Fig. 6 was calculated from Eq. (22), applying ωw/s = – 0.0665 

J/m
2
 (as for glass-water interface), ρw = 0.997 g/cm

3
, g = 9.80665 N/kg, and θ = 0.348 (the latter 

value is that measured by Schroth et al., 1996, for all sand columns): 

 

Δh, mm = 38.2/[rs , mm]        (23) 

 

As may be seen in Fig. 6, Eq. (23) coincides with the head of saturated zone. 

 

 

Tab. 4 Elevation of water in sand columns (data from Fig. 3 in Schroth et al, 1996; interpolated 

values). Porosity for all sand columns θ = 0.348. 

Radius of 

grains, mm 

Elevation of water, mm, at saturation of pore space: 

95 %                   90 %                  50 %                  10 %                  6 % 

0.5525 67 74 109 155 201 

0.3565 100 107 143 211 271 

0.266 140 152 192 259 360 

0.1795 216 223 266 366 443 

 

  

 

 

 

 

 

 

 

 

 

Fig. 6 Elevation of water in sand columns 

as function of grain radius and saturation 

(interpolated values). Data from Schroth et 
al (1996). Solid curve: Eq. (23). 
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 HYPOTHESIS ON EXISTENCE OF “WETTING PRESSURE” 

 
There is a very old idea on existence 

of so-called “wetting pressure”, or, 

sometimes, “disjoining pressure” (last term, 

however, is often used for “electrostatic 

pressure” between charged interfaces). Many 

said on pressures arising in opening plant 

buds, on ability of plant roots to move and 

crash large stones, etc, etc, etc. Generally 

speaking, all kinds of such “capillary 

pressures” may be explained by osmotic or by 

quasi-osmotic forces. Indeed, sweetness of 

maple sap was made not for us. Nevertheless, 

hypothesis on existence of “wetting pressure” 

may have some relation to reality. Indeed, 

attraction of water molecules to interface 

should cause such an effect.  

There is so-called “swelling pressure” 

in clays. In contact with bulk water, clay 

paste sucks water, and this causes positive 

pressure, applied to external boundaries of 

clay body (see Fig. 7). Generally speaking, 

there is no necessity to introduce “wetting 

pressure” for explanation of this 

phenomenon. The effect of “swelling 

pressure” may be explained on basis of simple 

electrostatic model (see Pivovarov, 2016). 

Nevertheless, it is possible that the “wetting 

pressure” gives some contribution into total resistance of clay against compressive force.  

Fig. 8 shows experimental data on 

swelling pressure in montmorillonite clay, as 

measured by Kulchitsky and Usyarov (1981). 

By analogy with osmotic elevation, one may 

guess, that the capillary elevation, multiplied 

by ρwg, gives hydrostatic pressure, which acts 

as a force, applied to walls of capillary. Thus, 

with Ss = 646 m
2
/g (as measured by 

Kulchitsky and Usyarov 1981), ρs = 2.78 

g/cm
3
 (typical density of clay particles), and 

ωw/s = –0.0665 J/m
2
, one may calculate 

“wetting pressure” from Eq. (22), multiplied 

by the factor ρwg: 

 

ΔP, bar = 1194×{(1–θ)/θ}       (24) 

 

As may be seen in Fig. 8, real swelling 

pressure in montmorillonite clay is 1.5-2 

orders smaller than expected from Eq. (24). 

Thus, “naive model” of “wetting pressure” is 

totally wrong.  

CLAY
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PISTON

WATER

HARD FILTER

SWELLING
PRESSURE

Fig. 7 Swelling pressure of clay paste in 

equilibrium with water. 

Fig. 8 Swelling pressure in montmorillonite 

clay (sodium form) equilibrated with water. 

Data from Kulchitsky and Usyarov (1981). 

Dashed curve: “naive model” of “wetting 

pressure” (Eq. 24). 

0.6 0.7 0.8 0.9 1.0

porosity

-1

0

1

2

3

lo
g

[s
w

el
li

n
g
 p

re
ss

u
re

, 
b

a
r]

data from
Kulchitsky and Usyarov (1981)

g       h+
w +



CAPILLARY ACTION         Yellow zone, hypothetical: ideas 

 

17 

 

However, it is likely, that the “wetting 

pressure” exists in very fine capillaries of 

sub-molecular size. Negative sign of apparent 

surface energy of water in contact with glass 

indicates an expansive interfacial force, and 

thus positive excess pressure at interface. 

Presumably, attraction between glass and 

water molecules decreases with distance from 

interface by exponent. Thus, pressure profile 

should be consistent with: 

 

Px = Px=0×exp(– x/λ)        (25) 

 

Here Px=0 is interfacial pressure at x = 0 (in 

the absence of overlap), x is distance from 

interface, and λ is some specific distance.  

 Integration of Eq. (25) by dx gives 

surface energy: 

 

ωw/s = – Px=0×λ  (26) 

 

It should be noted that Px=0 is not “pressure 

jump” between solid and liquid. Attraction of water molecules to solid is equilibrated by 

attraction of surface atoms to water molecules. In result, “interfacial pressure” acts within a very 

fine “interfacial layer”. However, force fields of interfaces may be overlapped. Thus, “wetting 

pressure” in flat slit may be estimated as an overlap of interfacial pressures at mid-plane: 

 

Pwet , bar = 2×Px=0×exp(– rfl/λ) = – {2ωw/s /λ}×exp(– rfl/λ)     (27) 

 

Here, rfl is a half of average distance between particles: 

 

rfl , Å = 10000{θ/(1–θ)}/{[Ss, m
2
/g][ρs, g/cm

3
]}      (28) 

 

In Fig. 9, the data on swelling pressure in montmorillonite clay (Kulchitsky and Usyarov, 

1981), same as in Fig. 8, are plotted on normal scale. Due to significant surface charge (~ - 1.51 

μeq/m
2
), electrostatic forces give significant contribution into swelling pressure. Dashed curve in 

Fig. 9 was calculated for “electrostatic pressure” in accordance with original Gouy-Chapman 

model (see Pivovarov, 2016, for details). With specific surface area Ss = 646 m
2
/g, density of 

particles ρs = 2.78 g/cm
3
, and apparent surface energy of water in contact with clay, ωw/s ~ – 

0.0665 J/m
2
 (as for glass-water interface), contribution of “wetting pressure” may be estimated 

from Eq. (27): 

 

Pwet , bar = {13300/[λ, Å]}×exp{– 5.57×θ/(1–θ)/[λ, Å]}     (29) 

 

The solid curve in Fig. 9 was calculated from Eq. (29) with λ = 1.5 Å (which is ~ radius of water 

molecule). As may be seen, Eq. (29) is not so far from reality as Eq. (24). Thus, it is possible that 

“wetting pressure” exists in capillaries of sub-molecular size. 

 

 

 

 

Fig. 9 Swelling pressure in montmorillonite 

clay (sodium form) equilibrated with water. 

Data from Kulchitsky and Usyarov (1981). 

Dashed curve: “electrostatic pressure” in 

accordance with Gouy-Chapman model (see 

for details Pivovarov, 2016). Solid curve: 
“wetting pressure” (Eq. 29). 
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CONCLUDING REMARKS 
 

Gibbs approach gives self-consistent theory of capillarity. As for existence of “wetting 

pressure”, this seems to be possible for very fine pores of sub-molecular size. At pore size about 

of several nanometers, it disappears.  
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