WAVELENGHTS OF SPECTRAL LINES OF HYDROGEN ATOM AND FORGOTTEN BOHR FORMULA

Sergey Pivovarov
Institute of Experimental Mineralogy, Russian Academy of Sciences
142432 Chernogolovka, Moscow district, Russia
E-mail: serg@iem.ac.ru

Published online 20.09.2019

ABSTRACT

With use of original Bohr model, corrected in accordance with Archimedes and Ampere laws, was obtained forgotten Bohr formula, which was found to be consistent with experimental data.

ORIGINAL BOHR MODEL OF HYDROGEN ATOM

In accordance with Coulomb law, attraction force between proton and electron is

$$
\begin{equation*}
\mathrm{F}_{\text {colomb }}, \mathrm{N}=\left\{\mathrm{c}^{2} / 10^{7}\right\} \mathrm{e}^{2} / \mathrm{r}_{\mathrm{e}}^{2} \tag{1}
\end{equation*}
$$

Here $\mathrm{c}=299792458 \mathrm{~m} / \mathrm{s}$ is speed of light in vacuum, $\mathrm{e}=1.6021766208 \times 10^{-19}$ Coulombs is elementary charge, r_{e} is radius of electron orbit. Centrifugal force is given by:
$\mathrm{F}_{\text {centrifugal }}, \mathrm{N}=\mathrm{m}_{\mathrm{e}} \mathrm{v}_{\mathrm{e}}{ }^{2} / \mathrm{r}_{\mathrm{e}}$
From equality $\mathrm{F}_{\text {colomb }}=\mathrm{F}_{\text {centrifugal }}$, there is relation:
$m_{e} v_{e}^{2}=\left\{c^{2} / 10^{7}\right\} e^{2} / r_{e}$
(3) or
$2 \mathrm{E}_{\text {kin }}=\mathrm{E}_{\text {colomb }}$
From this relation, orbital velocity of electron is defined by:
$\mathrm{v}_{\mathrm{e}}=\left\{\mathrm{c}^{2} / 10^{7}\right\} \mathrm{e}^{2} / \mathrm{r}_{\mathrm{e}} \mathrm{m}_{\mathrm{e}} \mathrm{V}_{\mathrm{e}}$
Bohr assumed equality:
$n \hbar=r_{e} m_{e} V_{e}$
Here n is level number.
With this guess, orbital velocity of electron at n level is
$\mathrm{v}_{\mathrm{en}}=\left\{\mathrm{c}^{2} / 10^{7}\right\} \mathrm{e}^{2} / \mathrm{n} \mathrm{\hbar}=[2187691.262716 \mathrm{~m} / \mathrm{s}] / \mathrm{n}$
Fine structure constant is then
$\alpha=\mathrm{v}_{\mathrm{e} 1} / \mathrm{c}=\left\{\mathrm{c} / 10^{7}\right\} \mathrm{e}^{2} / \hbar=1 / 137.03599914 \ldots=0.0072973525662 \ldots$
Here $\mathrm{v}_{\mathrm{e} 1}$ is velocity of electron at $1^{\text {st }}$ level.

Radius or circular trajectory of electron is:
$\mathrm{r}_{\mathrm{en}}=\left\{\mathrm{c}^{2} / 10^{7}\right\} \mathrm{e}^{2} / \mathrm{m}_{\mathrm{e}} \mathrm{v}_{\mathrm{e}}{ }^{2}=\mathrm{n} \mathrm{\hbar} / \mathrm{m}_{\mathrm{e}} \mathrm{v}_{\mathrm{e}}=\left[\begin{array}{ll}0.529177210564 \ldots \AA] \mathrm{n}^{2}\end{array}\right.$
From Eq (4), binding energy at $1^{\text {st }}$ level E1 $=\left(\mathrm{E}_{\text {coulomb }}-\mathrm{E}_{\text {ekin }}\right)=\mathrm{E}_{\text {ekin }}$:
$\mathrm{E} 1=\mathrm{E}_{\text {coulomb }}-\mathrm{E}_{\text {kin }}=0.5 \mathrm{E}_{\text {coulomb }}=\mathrm{E}_{\text {ekin }}=\mathrm{m}_{\mathrm{e}} \mathrm{v}_{\mathrm{e}}^{2} / 2=2.17987232539 \times 10^{-18} \mathrm{~J}$
Binding energies at higher levels:
$\mathrm{E}_{\mathrm{n}}=\mathrm{E} 1 / \mathrm{n}^{2}$
Lines of ionization from n level (in vacuum):
$\lambda(n-\infty)=c h / E_{n}=[911.26705038385 \AA]^{2}$
Corresponding frequencies are:
$\mathcal{V}(\mathrm{n}-\infty)=\mathrm{c} / \lambda(\mathrm{n}-\infty)=\mathrm{E}_{\mathrm{n}} / \mathrm{h}=\left[3.289841961 * 10^{15} \mathrm{~Hz}\right] / \mathrm{n}^{2}$
Specific frequency of hydrogen atom (number of electron rotations per second $=\mathrm{Hz}$) is:
$\mathcal{V}_{\mathrm{At}}=\left\{\mathrm{v}_{\mathrm{e}} / 2 \pi \mathrm{r}_{\mathrm{e}}\right\}=\left[6.579683922 * 10^{15} \mathrm{~Hz}\right] / \mathrm{n}^{3}$
Interestingly, that resonance between atom and light arises at $\mathcal{V}_{\text {light }}(\mathrm{n}-\infty)=0.5 \mathrm{n} \mathcal{V}_{\text {Atn }}$, i.e. at $\mathcal{V}(1-\infty)=0.5 \mathcal{V}_{\mathrm{At}, \mathrm{n1} 1}$, at $\mathcal{V}(2-\infty)=\mathcal{V}_{\mathrm{At}, \mathrm{n2}}$, at $\mathcal{V}(3-\infty)=1.5 \mathcal{V}_{\mathrm{At}, \mathrm{n3}}$, at $\mathcal{V}(4-\infty)=2 \mathcal{V}_{\mathrm{At}, \mathrm{n} 4}$, etc.

Frequency of translation between levels is defined by
$\mathcal{V}\left(\mathrm{n}_{1}-\mathrm{n}_{2}\right)=\mathcal{V}\left(\mathrm{n}_{1}-\infty\right)-\mathcal{V}\left(\mathrm{n}_{2}-\infty\right)=\left[3.289841961 * 10^{15} \mathrm{~Hz}\right]\left\{1 / \mathrm{n}_{1}^{2}-1 / \mathrm{n}_{2}^{2}\right\}$
Wavelengths of spectral lines (in vacuum) may be then calculated from:
$\lambda\left(\mathrm{n}_{1}-\mathrm{n}_{2}\right)=\mathrm{ch} /\left(\mathrm{E}_{\mathrm{n} 1}-\mathrm{E}_{\mathrm{n} 2}\right)=[911.26705038385 \AA] /\left\{1 / \mathrm{n}_{1}{ }^{2}-1 / \mathrm{n}_{2}{ }^{2}\right\}$
Here $1 / \mathrm{R}_{\mathrm{H}}=911.26705038385 \AA$ is reversed Rydberg constant. As may be seen in Tab 2, within $\sim 0.0535 \%$, original Bohr model is consistent with measurements.

Tab 1 Fundamental constants (Mohr et al 2016)

Speed of light, c	$299792458 \mathrm{~m} / \mathrm{s}$
Plank constant, h	$6.62607004 \times 10^{-34} \mathrm{~J} \times \mathrm{s}$
Reduced Plank constant, $\mathrm{\hbar}=\mathrm{h} / 2 \pi$	$1.0545718 \times 10^{-34} \mathrm{~J} \times \mathrm{s}$
Fine structure constant, α	$1 / 137.03599914$
Elementary charge, e	$1.6021766208 \times 10^{-19} \mathrm{C}$
Mass of electron, m_{e}	$0.000910938356 \times 10^{-27} \mathrm{~kg}$
Mass of proton, m_{p}	$1.672621898 \times 10^{-27} \mathrm{~kg}$
Ratio $\mathrm{m}_{\mathrm{p}} / \mathrm{m}_{\mathrm{e}}$	1836.152674
Ratio $\mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}}$	0.0005446170214
Rydberg constant, R_{i}	$10973731.568539 \mathrm{~m}^{-1}$
Rydberg constant of ${ }^{1} \mathrm{H}, \mathrm{R}_{\mathrm{H}}=\mathrm{R}_{\mathrm{i}} /\left(1+\mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}}\right)$	$10967758.34 \mathrm{~m}^{-1}$

Tab 2 Wavelengths of Spectral lines of Hydrogen atom in vacuum and prediction from Bohr model, and that multiplied by $\left(1+\mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}}\right)$.

Translation	Compilation of experimental data from Kramida $(2010)^{\mathrm{a}}$	Bohr model wavelengths, \AA (Eq 16)	Error, observed minus calculated, \%	Bohr model wavelengths, \AA multiplied by $\left(1+\mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}}\right)$ (Eq 17)	Error, observed minus calculated, \%
Lyman series					
1-2	1215.6701	1215.022734	+0.0533	1215.684456	-0.001181
1-3	1025.7283	1025.175432	+0.0539	1025.733760	-0.000532
1-4	972.5167	972.018187	+0.0513	972.547565	-0.003174
1-5	949.7416	949.236511	+0.0532	949.753481	-0.001251
1-6	937.8136	937.303252	+0.0544	937.813723	-0.000013
1-7	930.7512	930.251781	+0.0537	930.758412	-0.000775
1-8	926.2493	925.731607	+0.0559	926.235776	+0.001460
1-9	923.1479	922.657889	+0.0531	923.160384	-0.001352
1-10	920.9468	920.471768	+0.0516	920.973073	-0.002853
1-11	919.3424	918.860943	+0.0524	919.361370	-0.002063
1-12	918.1253	917.639547	+0.0529	918.139309	-0.001526
1-m	[911.752 353] ${ }^{\text {b }}$	911.26705038	+0.05326	911.76334193	-0.001205
Balmer series					
2-3	6564.6046	6561.122763	+0.0515	6564.696062	-0.001393
2-4	4862.7087	4860.090935	+0.0539	4862.737824	-0.000599
2-5	4341.6930	4339.366907	+0.0536	4341.730200	-0.000857
2-6	4102.8923	4100.701727	+0.0534	4102.935039	-0.001042
2-7	3971.1977	3969.074264	+0.0535	3971.235889	-0.000962
2-8	3890.1666	3888.072748	+0.0539	3890.190259	-0.000608
2-9	3836.4844	3834.422394	+0.0538	3836.510686	-0.000685
2-10	3798.9880	3796.946044	+0.0538	3799.013925	-0.000682
2-11	3771.7047	3769.685918	+0.0536	3771.738953	-0.000908
2-12	3751.2163	3749.213007	+0.0534	3751.254893	-0.001028
2-13	3735.4314	3733.433491	+0.0535	3735.466783	-0.000947
2-14	3723.0040	3721.007122	+0.0537	3723.033646	-0.000796
2-15	3713.0344	3711.042287	+0.0537	3713.063383	-0.000781
2-16	3704.9126	3702.926427	+0.0536	3704.943104	-0.000823
2-17	3698.2098	3696.227053	+0.0536	3698.240082	-0.000819
2-18	3692.6013	3690.631554	+0.0534	3692.641535	-0.001090
2-19	3687.8800	3685.909302	+0.0535	3687.916711	-0.000995
2-20	3683.8708	3681.887072	+0.0539	3683.892291	-0.000583
2-21	3680.4162	3678.432670	+0.0539	3680.436007	-0.000538
2-22	3677.4224	3675.443770	+0.0538	3677.445479	-0.000628
2-m	[3647.022 802] ${ }^{\text {b }}$	3645.06820154	+0.05362	3647.05336772	-0.000838

a: data from Tab. 10 and 11 in Kramida (2010), initially presented in the inversed centimeters, mostly with 7 digits.
b: averaged values, calculated from experimental data (this study).

As may be seen, deviation of original Bohr model from data is close to electron-to-proton mass ratio. Thus, multiplying wavelengths from original Bohr model by "adjusting factor" ($1+\mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}}$), one may obtain much closer result (see last columns in Tab. 2):

$$
\begin{align*}
\lambda(\mathrm{n} 1-\mathrm{n} 2) & =[911.26705038385 \AA]\left(1+\mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}}\right) /\left\{1 / \mathrm{n}_{1}{ }^{2}-1 / \mathrm{n}_{2}{ }^{2}\right\}= \\
& =[911.76334193052 \AA] /\left\{1 / \mathrm{n}_{1}^{2}-1 / \mathrm{n}_{2}{ }^{2}\right\}=\left\{1 / \mathrm{R}_{\mathrm{H}}\right\} /\left\{1 / \mathrm{n}_{1}{ }^{2}-1 / \mathrm{n}_{2}{ }^{2}\right\} \tag{17}
\end{align*}
$$

Here $1 / R_{H}=911.76334193052 \AA$ is reversed Rydberg constant for ${ }^{1} \mathrm{H}$. Let us consider the origin of "adjusting factor" $\left(1+\mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}}\right)$.

BOHR MODEL WITH ROTATING PROTON

At the movement of electron and proton around the barycenter, the Archimedes law of lever should be satisfied:
$\left|\mathrm{v}_{\mathrm{p}} / \mathrm{v}_{\mathrm{e}}\right|=\mathrm{r}_{\mathrm{p}} / \mathrm{r}_{\mathrm{e}}=\mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}}$
From Eq (18), radius of proton orbit and its orbital velocity may be found from:
$\mathrm{r}_{\mathrm{p}}=\mathrm{r}_{\mathrm{e}} \mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}}$
$\left|\mathrm{v}_{\mathrm{p}}\right|=\left|\mathrm{v}_{\mathrm{e}}\right| \mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}}$
Note here that velocities of proton and electron are always opposite (see Fig 1).

Fig. 1 Idealized orbit of Sun (neglecting tags from all planets except Jupiter). Balance between Coulomb and centrifugal tags should be rewritten as:

$$
\begin{equation*}
m_{e} v_{e}^{2} / r_{e}=m_{p} v_{p}^{2} / r_{p}=\left\{c^{2} / 10^{7}\right\} e^{2} /\left(r_{e}+r_{p}\right)^{2} \tag{21}
\end{equation*}
$$

This relation may be transformed to:
$\left(1+m_{e} / m_{p}\right) * m_{e} v_{e}{ }^{2} /\left(r_{e}+r_{p}\right)=\left(1+m_{p} / m_{e}\right) * m_{p} v_{p}{ }^{2} /\left(r_{e}+r_{p}\right)=\left\{c^{2} / 10^{7}\right\} e^{2} /\left(r_{e}+r_{p}\right)^{2}$
$\left(1+m_{e} / m_{p}\right) * m_{e} \mathrm{v}_{\mathrm{e}}{ }^{2}=\left(1+\mathrm{m}_{\mathrm{p}} / \mathrm{m}_{\mathrm{e}}\right) * \mathrm{~m}_{\mathrm{p}} \mathrm{v}_{\mathrm{p}}{ }^{2}=\left\{\mathrm{c}^{2} / 10^{7}\right\} \mathrm{e}^{2} /\left(\mathrm{r}_{\mathrm{e}}+\mathrm{r}_{\mathrm{p}}\right)$
Thus, orbital velocities of electron and proton are
$v_{e}=\left\{c^{2} / 10^{7}\right\} e^{2} /\left\{\left(\mathrm{r}_{\mathrm{e}}+\mathrm{r}_{\mathrm{p}}\right) \mathrm{m}_{\mathrm{e}} \mathrm{v}_{\mathrm{e}}\right\} /\left(1+\mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}}\right)$
$\mathrm{v}_{\mathrm{p}}=\left\{\mathrm{c}^{2} / 10^{7}\right\} \mathrm{e}^{2} /\left\{\left(\mathrm{r}_{\mathrm{e}}+\mathrm{r}_{\mathrm{p}}\right) \mathrm{m}_{\mathrm{p}} \mathrm{v}_{\mathrm{p}}\right\} /\left(1+\mathrm{m}_{\mathrm{p}} / \mathrm{m}_{\mathrm{e}}\right)=\mathrm{v}_{\mathrm{e}} \mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}}$
Since equality $n \hbar=m_{e} v_{e} r_{e} \approx 1836 \times m_{p} v_{p} r_{p}$ seems to be doubtful, let as assume the following relation:
$n \hbar=\left(r_{e}+r_{p}\right) \times m_{e} \times v_{e}=\left(r_{e}+r_{p}\right) \times m_{p} \times v_{p}$
Note here that $\left(r_{e}+r_{p}\right)$ is distance between electron and proton, like in Eq (6).
Thus, orbital velocities of electron and proton may be calculated from:
$\mathrm{v}_{\mathrm{e}}=\left\{\mathrm{c}^{2} / 10^{7}\right\} \mathrm{e}^{2} /\left\{\mathrm{n} \mathrm{\hbar}\left(1+\mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}}\right)\right\}=[2186500.457349 \mathrm{~m} / \mathrm{s}] / \mathrm{n}$
$\mathrm{v}_{\mathrm{p}}=\left\{\mathrm{c}^{2} / 10^{7}\right\} \mathrm{e}^{2} /\left\{\mathrm{n} \mathrm{\hbar}\left(1+\mathrm{m}_{\mathrm{p}} / \mathrm{m}_{\mathrm{e}}\right)\right\}=\mathrm{v}_{\mathrm{e}} \mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}}=[1190.805366 \mathrm{~m} / \mathrm{s}] / \mathrm{n}$
Orbital radii may be then calculated from
$\mathrm{r}_{\mathrm{e}}+\mathrm{r}_{\mathrm{p}}=\mathrm{n} \mathrm{\hbar} / \mathrm{m}_{\mathrm{e}} \mathrm{v}_{\mathrm{e}}=\mathrm{n} / \mathrm{m}_{\mathrm{p}} \mathrm{v}_{\mathrm{p}}=\left[\begin{array}{ll}0.52946540948 \AA] \mathrm{n}^{2}\end{array}\right.$
$\mathrm{r}_{\mathrm{e}}=\left(\mathrm{r}_{\mathrm{e}}+\mathrm{r}_{\mathrm{p}}\right) /\left(1+\mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}}\right)=\left[\begin{array}{ll}0.52917721056 \AA\end{array} \mathrm{n}^{2}\right.$
$r_{p}=\left(r_{e}+r_{p}\right) /\left(1+m_{p} / m_{e}\right)=r_{e} m_{e} / m_{p}=[0.00028819892 \AA] n^{2}$
Kinetic energies of electron and proton are:
$\mathrm{E}_{\mathrm{e}-\mathrm{kin}}=\mathrm{m}_{\mathrm{e}} \mathrm{v}_{\mathrm{e}}{ }^{2} / 2=\left[2.1774998725^{*} 10^{-18} \mathrm{~J}\right] / \mathrm{n}^{2}$
$\mathrm{E}_{\mathrm{p} \text {-kin }}=\mathrm{m}_{\mathrm{p}} \mathrm{v}_{\mathrm{p}}^{2} / 2=\left\{\mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}}\right\} \mathrm{E}_{\text {ekin }}=\left[0.0011859035 * 10^{-18} \mathrm{~J}\right] / \mathrm{n}^{2}$
Thus, total kinetic energy is:
$\mathrm{E}_{\text {kin }}=\mathrm{E}_{\text {ekin }}+\mathrm{E}_{\text {pkin }}=\mathrm{E}_{\text {ekin }}\left(1+\mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}}\right)=\mathrm{E}_{\text {pkin }}\left(1+\mathrm{m}_{\mathrm{p}} / \mathrm{m}_{\mathrm{e}}\right)=\left[2.178685776 * 10^{-18} \mathrm{~J}\right] / \mathrm{n}^{2}$
Coulomb energy is

$$
\begin{align*}
& \mathrm{E}_{\text {Coulomb }}=\left\{\mathrm{c}^{2} / 10^{7}\right\} \mathrm{e}^{2} /\left(\mathrm{r}_{\mathrm{e}}+\mathrm{r}_{\mathrm{p}}\right)=\left\{\mathrm{c}^{2} / 10^{7}\right\} \mathrm{e}^{2} \mathrm{~m}_{\mathrm{e}} \mathrm{v}_{\mathrm{e}} / \mathrm{n} \hbar=\left\{\mathrm{c}^{2} / 10^{7}\right\} \mathrm{e}^{2} \mathrm{~m}_{\mathrm{p}} \mathrm{v}_{\mathrm{p}} / n \hbar= \\
&= {\left[4.357371552 * 10^{-18} \mathrm{~J}\right] / \mathrm{n}^{2} } \tag{35}
\end{align*}
$$

Thus, binding energy at $1^{\text {st }}$ level is:
$\mathrm{E} 1=\mathrm{E}_{\text {Coulomb }}-\mathrm{E}_{\text {ekin }}-\mathrm{E}_{\text {pkin }}=0.5 \mathrm{E}_{\text {Coulomb }}=\mathrm{E}_{\text {kin }}=2.178685776 * 10^{-18} \mathrm{~J}$
Thus, wavelengths may be calculated
$\lambda(1-\infty)=\mathrm{ch} / \mathrm{E} 1=1 / \mathrm{R}_{\mathrm{H}}=911.76334193052 \AA$
$\lambda(n-\infty)=(c h / E 1) n^{2}=\left[\begin{array}{ll}911.76334193052 \AA] n^{2}\end{array}\right.$
$\lambda\left(n_{1}-n_{2}\right)=\left[\begin{array}{ll}911.763 & 34193052 \AA\end{array}\right] /\left(1 / n_{1}{ }^{2}-1 / n_{2}{ }^{2}\right)$
As may be seen, wavelengths from Bohr model with rotating proton (Eq 39) are equal to original Bohr model wavelengths, multiplied by the factor ($1+\mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}}$), Eq (17).

However there is systematic overestimation by $\sim 0.001 \%$ (see Tab 2). Thus, multiplying Eq (39) by factor $1 / 1.00001$, one may obtain almost exact fit to data. So, let us consider the origin of "adjusting factor" $\sim 1 / 1.00001$.

AMPERE LAW AND THEORY OF RELATIVITY

In accordance with Ampere law, magnetic force between element of electric current and parallel infinite current is defined by (see Fig 2):
$\mathrm{F} / \Delta \mathrm{L}_{1}, \mathrm{~N} / \mathrm{m}=\left(1 / 10^{7}\right) * 2 \mathrm{I}_{1} \mathrm{I}_{2} / \mathrm{r} \quad\left(\right.$ at $\left.\mathrm{I}_{1} \| \mathrm{I}_{2} \perp_{\mathrm{r}}\right)$

Wire with electric current $\mathrm{I}_{1}=1 \mathrm{~A}$ and its length $\Delta \mathrm{L}=1 \mathrm{~m}$ interacts with parallel infinite electric current $\mathrm{I}_{2}=1 \mathrm{~A}$, located at dictance $\mathrm{r}=1 \mathrm{~m}$, with force $\mathrm{F}=2 * 10^{-7} \mathrm{~N}$. This is attraction if currents flow in the same direction, and it is repulsion if currents flow in opposite directions.

From this relation, one may guess differential Ampere law for parallel elements of current, located on perpendicular to both currents:

$$
\begin{equation*}
\mathrm{F}, \mathrm{~N}=\left(1 / 10^{7}\right) *\left(\mathrm{I}_{1} \mathrm{dL}_{1}\right) *\left(\mathrm{I}_{2} \mathrm{dL}_{2}\right) / \mathrm{r}^{2} \quad\left(\text { valid at } \mathrm{I}_{1} \| \mathrm{I}_{2} \perp \mathrm{r}, \text { and } \mathrm{dL}_{1}, \mathrm{dL}_{2} \ll \mathrm{r}\right) \tag{41}
\end{equation*}
$$

Original Amper law (Eq. 40), may be obtained via integration of tags from elements of currents in parallel and infinite wire with electric current I_{2}.

$$
\begin{array}{rl}
\mathrm{F}, \mathrm{~N}=\left(1 / 10^{7}\right) *\left(\mathrm{I}_{1} \mathrm{dL}_{1}\right) & \begin{array}{l}
\mathrm{L}=\infty \\
2 \int_{\mathrm{L}}\left(\mathrm{I}_{2} \mathrm{dL}\right) \\
\\
\mathrm{L}=0
\end{array} \\
=\left(1 / 10^{7}\right) * 2\left(\mathrm{I}_{1} \mathrm{dL}_{1}\right) * \mathrm{I}_{2} / \mathrm{r} & \mathrm{~L}=\infty \\
& \\
2 \int_{\mathrm{L}=0}^{2}\left(\mathrm{I}_{2} \mathrm{dL}\right) \mathrm{r} /\left(\mathrm{r}^{2}+\mathrm{L}^{2}\right)^{1.5} \tag{42}
\end{array}=
$$

Factor 2 arises here dew to integration from $L=0$ to $+\infty$, and from $L=0$ to $\infty, \sin (\alpha)=r /\left(r^{2}+L^{2}\right)^{0.5}$ is sinus of angle between distance and perpendicular to wires (see Fig 2). Resulting tags are just projections of "hypothetic total tag" onto perpendicular to wires. So, Eq. $(38=$ 39) is sum of tags, orthogonal to wires with current. In classic approach, magnet tag is always orthogonal to velocity of electrons, whereas parallel tags simply do not exist (see Fig. 2). Even if they exist, parallel tags from "upper" element B and "lower" element C of infinite current I_{2} eliminate each over. So, let us follow

Fig. 2 Scheme of interaction between element of current $I_{1}(A)$ and element of infinite current $I_{2}(B)$. the classic approach.

Element of current IdL may be represented by:
IdL, Coulomb $* \mathrm{~m} / \mathrm{s}=\left[\mathrm{e} * \mathrm{D}_{\mathrm{e}}\right.$, Coulombs $\left./ \mathrm{mm}^{3}\right]\left[\mathrm{v}_{\mathrm{e}}, \mathrm{mm} / \mathrm{s}\right]\left[\mathrm{S}, \mathrm{mm}^{2}\right][\mathrm{dL}, \mathrm{m}]$

$$
\begin{equation*}
=\mathrm{n}_{\mathrm{e}} * \mathrm{e}^{*} *\left[\mathrm{v}_{\mathrm{e}}, \mathrm{~m} / \mathrm{s}\right] \tag{43}
\end{equation*}
$$

Here e is elementary charge (1.602 1766208×10^{-19} Coulomb), D_{e} is density of electrons, v_{e} is velocity of electrons, S and dL are cross-section area and length of wire, n_{e} is number of electrons in element of current.

For instance, density of copper is $8.932 \mathrm{~g} / \mathrm{cm}^{3}=8.932 \mathrm{mg} / \mathrm{mm}^{3}$. From molar mass of cupper, $63.546 \mathrm{~g} / \mathrm{mol}$ and Avogadro number, density of electrons in cupper is $\mathrm{D}_{\mathrm{e}}=(8.932$ $\left.\mathrm{mg} / \mathrm{mm}^{3} / 63546 \mathrm{mg} / \mathrm{mol}\right)^{*} 6.022045 * 10^{23} \mathrm{~mol}^{-1}=8.464562 * 10^{19}$ electrons $/ \mathrm{mm}^{3}$. Thus, charge density of electrons in cupper (as well as ions Cu^{+}) is $\mathrm{e}^{*} \mathrm{D}_{\mathrm{e}}=13.5617$ Coulomb $/ \mathrm{mm}^{3}$.

From these estimates, velocity of electrons in cupper wires is:
$\mathrm{v}_{\mathrm{e}}, \mathrm{mm} / \mathrm{s}=[\mathrm{I}, \mathrm{A}] /\left\{\left[13.5617\right.\right.$ Coulombs $\left.\left./ \mathrm{mm}^{3}\right]\left[\mathrm{S}, \mathrm{mm}^{2}\right]\right\}$
For instance, at cross-section of wire $S=1 \mathrm{~mm}^{2}$, and electric current $\mathrm{I}=1 \mathrm{~A}$, velocity of electrons is only $0.073737 \mathrm{~mm} / \mathrm{s}$.

So on, differential Ampere law (Eq 38) may be rewritten as

$$
\begin{equation*}
\mathrm{F}, \mathrm{~N}=\left(1 / 10^{7}\right) *\left(\mathrm{n}_{1} * \mathrm{n}_{2}\right) \mathrm{e}^{2} *\left[\mathrm{v}_{\mathrm{e} 1}, \mathrm{~m} / \mathrm{s}\right]\left[\mathrm{v}_{\mathrm{e} 2}, \mathrm{~m} / \mathrm{s}\right] /[\mathrm{r}, \mathrm{~m}]^{2} \quad\left(\text { at } \mathrm{v}_{\mathrm{e} 1} \| \mathrm{v}_{\mathrm{e} 2} \perp_{\mathrm{r}}\right) \tag{45}
\end{equation*}
$$

Here n_{1} and n_{2} are numbers of electrons (= numbers of ions Cu^{+}) in elements of electric currents, $\mathrm{v}_{\mathrm{e} 1}$ and $\mathrm{v}_{\mathrm{e} 2}$ are velocities of electrons in wires.

However there is a problem: if observer walks (together with system of coordinates) along wires with velocity $\mathrm{v}_{\mathrm{e} 1}$ or $\mathrm{v}_{\mathrm{e} 2}$, interaction force between wires should be observed at zero! This mystery is origin of numerous hypotheses, including Theory of Relativity.

However there is a simple way to solve this puzzle (Pivovarov, 2014). Indeed, Eq (45) may be rewritten as (also at $\mathrm{v}_{\mathrm{e} 1} \| \mathrm{v}_{\mathrm{e} 2} \perp \mathrm{r}$):
$\mathrm{F}\left(\mathrm{n}_{1} \mathrm{e}^{-}{ }_{1}\right.$ and $\left.\mathrm{n}_{2} \mathrm{e}^{-}{ }_{2}\right)=-\left(\mathrm{c}^{2} / 10^{7}\right)\left\{\mathrm{n}_{1} \mathrm{n}_{2} \mathrm{e}^{2} / \mathrm{r}^{2}\right\}\left[1+0.5\left\{\left(\mathrm{v}_{\mathrm{e} 1}-\mathrm{v}_{\mathrm{e} 2}\right)^{2} / \mathrm{c}^{2}\right\}\right]=$

$$
\begin{equation*}
=-\left(\mathrm{c}^{2} / 10^{7}\right)\left\{\mathrm{n}_{1} \mathrm{n}_{2} \mathrm{e}^{2} / \mathrm{r}^{2}\right\}\left[1+0.5\left\{\left(\mathrm{v}_{\mathrm{e} 1}-2 \mathrm{v}_{\mathrm{e} 1} \mathrm{~V}_{\mathrm{e} 2}+\mathrm{v}_{\mathrm{e} 2}{ }^{2}\right) / \mathrm{c}^{2}\right\}\right] \tag{46}
\end{equation*}
$$

$\mathrm{F}\left(\mathrm{n}_{1} \mathrm{e}^{-}{ }_{1}\right.$ and $\left.\mathrm{n}_{2} \mathrm{Cu}^{+}{ }_{2}\right)=+\left(\mathrm{c}^{2} / 10^{7}\right)\left\{\mathrm{n}_{1} \mathrm{n}_{2} \mathrm{e}^{2} / \mathrm{r}^{2}\right\}\left[1+0.5\left\{\left(\mathrm{v}_{\mathrm{e} 1}\right)^{2} / \mathrm{c}^{2}\right\}\right]$
$\mathrm{F}\left(\mathrm{n}_{1} \mathrm{Cu}^{+}{ }_{1}\right.$ and $\left.\mathrm{n}_{2} \mathrm{e}^{-}{ }_{2}\right)=+\left(\mathrm{c}^{2} / 10^{7}\right)\left\{\mathrm{n}_{1} \mathrm{n}_{2} \mathrm{e}^{2} / \mathrm{r}^{2}\right\}\left[1+0.5\left\{\left(\mathrm{v}_{\mathrm{e} 2}\right)^{2} / \mathrm{c}^{2}\right\}\right]$
$\mathrm{F}\left(\mathrm{n}_{1} \mathrm{Cu}^{+}{ }_{1}\right.$ and $\left.\mathrm{n}_{2} \mathrm{Cu}^{+}{ }_{2}\right)=-\left(\mathrm{c}^{2} / 10^{7}\right) \mathrm{n}_{1} \mathrm{n}_{2} \mathrm{e}^{2} / \mathrm{r}^{2}$
Thus, total tag between elements of currents is:
$\mathrm{F}_{\text {SUM }}=\left(1 / 10^{7}\right)\left\{\mathrm{n}_{1} \mathrm{n}_{2} \mathrm{e}^{2} / \mathrm{r}^{2}\right\}\left(\mathrm{v}_{\mathrm{e} 1} *_{\mathrm{e} 2}\right) \quad\left(\right.$ at $\left.\mathrm{v}_{\mathrm{e} 1} \| \mathrm{v}_{\mathrm{e} 2} \perp_{\mathrm{r}}\right)$
Here, $\left(\mathrm{v}_{\mathrm{e} 1}-\mathrm{v}_{\mathrm{e} 2}\right)$ is velocity of electron in $1^{\text {st }}$ wire relatively to electron in $2^{\text {nd }}$ wire, $\mathrm{v}_{\mathrm{e} 1}$ is velocity of electron in $1^{\text {st }}$ wire relatively to ion Cu^{+}in $2^{\text {nd }}$ wire, and v_{2} is velocity of electron in $2^{\text {nd }}$ wire relatively to ion Cu^{+}in $1^{\text {st }}$ wire. As may be seen, this theory of relativity needs no corrections on distortion of time and space.

So on, electromagnetic force between proton and electron at circular trajectory in atom of hydrogen is:

$$
\begin{array}{ll}
\mathrm{F}_{\mathrm{CM}}=\left(\mathrm{c}^{2} / 10^{7}\right)\left\{\mathrm{e}^{2} / \mathrm{r}^{2}\right\}\left[1+0.5\left\{\mathrm{v}^{2} / \mathrm{c}^{2}\right\}\right] & \text { or, may be } \\
\mathrm{F}_{\mathrm{CM}}=\left(\mathrm{c}^{2} / 10^{7}\right)\left\{\mathrm{e}^{2} / \mathrm{r}^{2}\right\}\left[1+\left\{\mathrm{v}^{2} / \mathrm{c}^{2}\right\}\right]^{0.5} & \text { or, may be } \\
\mathrm{F}_{\mathrm{CM}}=\left(\mathrm{c}^{2} / 10^{7}\right)\left\{\mathrm{e}^{2} / \mathrm{r}^{2}\right\} /\left[1-\left\{\mathrm{v}^{2} / \mathrm{c}^{2}\right\}\right]^{0.5} & \text { or etc } \tag{53}
\end{array}
$$

Here v is velocity of electron relatively to proton or, the same, velocity of proton relatively to electron, and r is distance between electron and proton. Note here, that at circular orbit of electron, condition $\mathrm{v} \perp_{\mathrm{r}}$ is always satisfied. At $1^{\text {st }}$ level of hydrogen atom, velocity of electron is about $2188 \mathrm{~km} / \mathrm{s}$, and relation $0.5(\mathrm{v} / \mathrm{c})^{2} \approx 0.5 \alpha^{2} \approx 0.00002663$ is rather small. Because of this, all variants (Eqs 51,52,53) are almost identical in application to hydrogen atom. So, let as try most simple first variant (Eq. 51).

BOHR MODEL WITH ROTATING PROTON AND MAGNET TAG AND FOGOTTEN BOHR FORMULA

At circular orbits of electron and proton, there is equality between centrifugal and electromagnetic forces:
$\mathrm{m}_{\mathrm{e}} \mathrm{v}_{\mathrm{e}}{ }^{2} / \mathrm{r}_{\mathrm{e}}=\mathrm{m}_{\mathrm{p}} \mathrm{v}_{\mathrm{p}}{ }^{2} / \mathrm{r}_{\mathrm{p}}=\left(\mathrm{c}^{2} / 10^{7}\right)\left\{\mathrm{e}^{2} /\left(\mathrm{r}_{\mathrm{e}}+\mathrm{r}_{\mathrm{p}}\right)^{2}\right\}\left[1+0.5\left\{\left(\mathrm{v}_{\mathrm{e}}+\mathrm{v}_{\mathrm{p}}\right)^{2} / \mathrm{c}^{2}\right\}\right]$
Appling $r_{e}=\left(r_{e}+r_{p}\right) /\left(1+m_{e} / m_{p}\right)$ and $r_{p}=\left(r_{e}+r_{p}\right) /\left(1+m_{p} / m_{e}\right)$, this relation may be reduced to:
$\left(1+\mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}}\right) \mathrm{m}_{\mathrm{e}} \mathrm{v}_{\mathrm{e}}{ }^{2}=\left(1+\mathrm{m}_{\mathrm{p}} / \mathrm{m}_{\mathrm{e}}\right) \mathrm{m}_{\mathrm{p}} \mathrm{v}_{\mathrm{p}}{ }^{2}=\left(\mathrm{c}^{2} / 10^{7}\right)\left\{\mathrm{e}^{2} /\left(\mathrm{r}_{\mathrm{e}}+\mathrm{r}_{\mathrm{p}}\right)\right\}\left[1+0.5\left\{\left(\mathrm{v}_{\mathrm{e}}+\mathrm{v}_{\mathrm{p}}\right)^{2} / \mathrm{c}^{2}\right\}\right]$
Here $r_{e}+r_{p}$ is distance between electron and proton, $v_{e}+v_{p}$ is velocity of electron relatively to proton (or, the same, velocity of proton relatively to electron). So, orbital velocities of electron and proton at $1^{\text {st }}$ level are:
$\mathrm{v}_{\mathrm{e} 1}=\left[\left(\mathrm{c}^{2} / 10^{7}\right) \mathrm{e}^{2} / \hbar /\left(1+\mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}}\right)\right]\left[1+0.5\left\{\left(\mathrm{v}_{\mathrm{e}}+\mathrm{v}_{\mathrm{p}}\right)^{2} / \mathrm{c}^{2}\right\}\right]=$

$$
\begin{equation*}
=[2186500.457349 \mathrm{~m} / \mathrm{s}] *\left[1+0.5\left\{\left(\mathrm{v}_{\mathrm{e}}+\mathrm{v}_{\mathrm{p}}\right)^{2} / \mathrm{c}^{2}\right\}\right] \tag{56}
\end{equation*}
$$

$\mathrm{v}_{\mathrm{p} 1}=\left[\left(\mathrm{c}^{2} / 10^{7}\right) \mathrm{e}^{2} / \hbar /\left(1+\mathrm{m}_{\mathrm{p}} / \mathrm{m}_{\mathrm{e}}\right)\right]\left[1+0.5\left\{\left(\mathrm{v}_{\mathrm{e}}+\mathrm{v}_{\mathrm{p}}\right)^{2} / \mathrm{c}^{2}\right\}\right]=\mathrm{v}_{\mathrm{e} 1} \mathrm{~m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}}$
Solving these relations iteratively, one may obtain velocities of electron and proton at $1^{\text {st }}$ level:
$\mathrm{v}_{\mathrm{e} 1}=2186558.677505 \ldots \mathrm{~m} / \mathrm{s}$
$\mathrm{v}_{\mathrm{pl}}=1190.837074 \ldots \mathrm{~m} / \mathrm{s}$
Velocity of electron relatively to proton (or, velocity of proton with respect to electron) at $1^{\text {st }}$ level is (see Fig 1):
$\mathrm{v}_{\mathrm{e} 1}+\mathrm{v}_{\mathrm{p} 1}=\mathrm{v}_{\mathrm{e} 1}\left(1+\mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}}\right)=2187749.514579 \ldots \mathrm{~m} / \mathrm{s}$
Distance between electron and proton at $1^{\text {st }}$ level is
$\left(\mathrm{r}_{\mathrm{e} 1}+\mathrm{r}_{\mathrm{p} 1}\right)=\hbar / \mathrm{m}_{\mathrm{e}} \mathrm{V}_{\mathrm{e} 1}=\hbar / \mathrm{m}_{\mathrm{p}} \mathrm{v}_{\mathrm{p} 1}=0.529451311729572 \ldots \AA$
Radii of electron and proton orbits at $1^{\text {st }}$ level:
$r_{e l}=\left(r_{e 1}+r_{p l}\right) /\left(1+m_{e} / m_{p}\right)=0.529163120487063 \ldots \AA$
$\mathrm{r}_{\mathrm{p} 1}=\left(\mathrm{r}_{\mathrm{e} 1}+\mathrm{r}_{\mathrm{p} 1}\right) /\left(1+\mathrm{m}_{\mathrm{p}} / \mathrm{m}_{\mathrm{e}}\right)=\mathrm{r}_{\mathrm{e} 1} \mathrm{~m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}}=0.000288191242509 \ldots \AA$
Similarly, velocities of electron and proton at level n may be calculated from:
$\mathrm{v}_{\mathrm{en}}=(1 / \mathrm{n})[2186500.457349 \mathrm{~m} / \mathrm{s}]^{*}\left[1+0.5\left\{\left(\mathrm{v}_{\mathrm{en}}+\mathrm{v}_{\mathrm{pn}}\right)^{2} / \mathrm{c}^{2}\right\}\right]$
$\mathrm{v}_{\mathrm{pn}}=\mathrm{v}_{\mathrm{en}} \mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}}$
Kinetic energies of electron and proton at $1^{\text {st }}$ level may be calculated from:
$E_{\text {ekin }}(n=1)=m_{e} V_{e}{ }^{2} / 2=2.177615762768852 * 10^{-18} J$
$\mathrm{E}_{\mathrm{pkin}}(\mathrm{n}=1)=\mathrm{m}_{\mathrm{p}} \mathrm{v}_{\mathrm{p}}{ }^{2} / 2=\mathrm{E}_{\text {ekin }} \mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}}=0.001859666104505 * 10^{-18} \mathrm{~J}$
Total kinetic energy at $1^{\text {st }}$ level is:
$\mathrm{E}_{\text {kin }}(\mathrm{n}=1)=\mathrm{E}_{\text {ekin }}+\mathrm{E}_{\mathrm{pkin}}=\mathrm{E}_{\text {ekin }}\left(1+\mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}}\right)=2.1788018017 \ldots * 10^{-18} \mathrm{~J}$
Kinetic energy at others levels may be calculated from:
$\mathrm{E}_{\mathrm{kin}}(\mathrm{n})=0.5 \mathrm{~m}_{\mathrm{e}} \mathrm{V}_{\mathrm{en}}{ }^{2}\left[1+\mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}}\right]$
Coulombic Energy at $1^{\text {st }}$ level is:
$\mathrm{E}_{\text {Coulomb }}(\mathrm{n}=1)=\left(\mathrm{c}^{2} / 10^{7}\right)\left\{\mathrm{e}^{2} /\left(\mathrm{r}_{\mathrm{e}}+\mathrm{r}_{\mathrm{p}}\right)\right\}=\left(\mathrm{c}^{2} / 10^{7}\right)\left\{\mathrm{m}_{\mathrm{e}} \mathrm{v}_{\mathrm{e} 1} \mathrm{e}^{2} / \hbar\right\}=4.3574875762 \ldots * 10^{-18} \mathrm{~J}$
$\mathrm{E}_{\text {Coulomb }}(\mathrm{n})=\left(\mathrm{c}^{2} / 10^{7}\right)\left\{\mathrm{m}_{\mathrm{e}} \mathrm{V}_{\mathrm{en}} \mathrm{e}^{2} / \mathrm{n} \hbar\right\}$
Magnet tag is defined by:
$\mathrm{F}_{\text {Magnet }}(\mathrm{n}=1)=\left(0.5 / 10^{7}\right) \mathrm{e}^{2}\left(\mathrm{v}_{\mathrm{el} 1}+\mathrm{v}_{\mathrm{p} 1}\right)^{2} /\left(\mathrm{r}_{\mathrm{e} 1}+\mathrm{r}_{\mathrm{pl}}\right)^{2}=\left(0.5 / 10^{7}\right)\left\{\mathrm{e}^{2}\left(\mathrm{v}_{\mathrm{e} 1}+\mathrm{v}_{\mathrm{pl}}\right)^{2}\left(\mathrm{v}_{\mathrm{e} 1} \mathrm{~m}_{\mathrm{e}} / \hbar\right)^{2}\right\}$
$\mathrm{F}_{\text {Magnet }}(\mathrm{n}=2) \approx\left(0.5 / 10^{7}\right) \mathrm{e}^{2}\left(0.5 \mathrm{v}_{\mathrm{e} 1}+0.5 \mathrm{v}_{\mathrm{pl}}\right)^{2} /\left(4 \mathrm{r}_{\mathrm{e} 1}+4 \mathrm{r}_{\mathrm{p} 1}\right)^{2}=\left(0.5 / 10^{7}\right)\left\{\mathrm{e}^{2}\left(\mathrm{v}_{\mathrm{e} 1}+\mathrm{v}_{\mathrm{pl}}\right)^{2} /\left(\mathrm{r}_{\mathrm{e} 1}+\mathrm{r}_{\mathrm{p} 1}\right)^{2}\right\} / 2^{6}$
$\mathrm{F}_{\text {Magnet }}(\mathrm{n}=3) \approx\left(0.5 / 10^{7}\right) \mathrm{e}^{2}\left(\mathrm{v}_{\mathrm{e} 1} / 3+\mathrm{v}_{\mathrm{p} 1} / 3\right)^{2} /\left(9 \mathrm{r}_{\mathrm{e} 1}+9 \mathrm{r}_{\mathrm{p} 1}\right)^{2}=\left(0.5 / 10^{7}\right)\left\{\mathrm{e}^{2}\left(\mathrm{v}_{\mathrm{e} 1}+\mathrm{v}_{\mathrm{p} 1}\right)^{2} /\left(\mathrm{r}_{\mathrm{e} 1}+\mathrm{r}_{\mathrm{p} 1}\right)^{2}\right\} / 3^{6}$
As may be seen, Magnet tag drops as $1 / \mathrm{n}^{6}$, or as $1 /\left(\mathrm{r}_{\mathrm{e}}+\mathrm{r}_{\mathrm{p}}\right)^{3}$. Integer of $1 / \mathrm{x}^{3}$ is $-0.5 / \mathrm{x}^{2}$. Thus, hypothetical "Magnet energy" drops as $1 / \mathrm{n}^{4}$ or $1 / \mathrm{r}^{2}$ and may be guessed from:
$\mathrm{E}_{\mathrm{Mn}}=\left(0.25 / 10^{7}\right)\left\{\mathrm{e}^{2}\left(\mathrm{v}_{\mathrm{en}}+\mathrm{v}_{\mathrm{pn}}\right)^{2}\right\} /\left(\mathrm{r}_{\mathrm{en}}+\mathrm{r}_{\mathrm{pn}}\right)=\left(0.25 / 10^{7}\right)\left\{\mathrm{e}^{2}\left(\mathrm{v}_{\mathrm{en}}+\mathrm{v}_{\mathrm{pn}}\right)^{2}\right\} \mathrm{v}_{\mathrm{en}} \mathrm{m}_{\mathrm{e}} /(\mathrm{n} \hbar) \sim \mathrm{E}_{\mathrm{M} 1} / \mathrm{n}^{4}$
"Magnet energy" at $1^{\text {st }}$ level is:

$$
\begin{gather*}
\mathrm{E}_{\mathrm{M} 1}=\left(0.25 / 10^{7}\right)\left\{\mathrm{e}^{2}\left(\mathrm{v}_{\mathrm{e} 1}+\mathrm{v}_{\mathrm{p} 1}\right)^{2}\right\} /\left(\mathrm{r}_{\mathrm{e} 1}+\mathrm{r}_{\mathrm{pl} 1}\right)=\left(0.25 / 10^{7}\right)\left\{\mathrm{e}^{2}\left(\mathrm{v}_{\mathrm{e} 1}+\mathrm{v}_{\mathrm{pl} 1}\right)^{2}\right\} \mathrm{v}_{\mathrm{e} 1} \mathrm{~m}_{\mathrm{e}} / \hbar= \\
=0.0000500136 \ldots * 10^{-18} \mathrm{~J} \tag{76}
\end{gather*}
$$

Thus binding energy at $1^{\text {st }}$ level is:
$\mathrm{E} 1=\mathrm{E}_{\mathrm{C} 1}+\mathrm{E}_{\mathrm{M} 1}-\mathrm{E}_{\mathrm{kin} 1}=2.1787437881 \ldots * 10^{-18} \mathrm{~J}$
$\lambda(1-\infty)=\mathrm{hc} / \mathrm{E} 1=911.7390649676533 \ldots \AA$
Close approximation to present model (exact within 8 digits) is "formula, suggested by Dr. Bohr in letter to Prof. Fowler" (citation from Curtis, 1914, with parameter "k" instead $0.5 \alpha^{2}$):

$$
\begin{align*}
& \lambda\left(\mathrm{n}_{1}-\mathrm{n}_{2}\right)=1 / \mathrm{R}_{\mathrm{H}} /\left(1 / \mathrm{n}_{1}^{2}-1 / \mathrm{n}_{2}^{2}\right) /\left\{1+0.5 \alpha^{2}\left(1 / \mathrm{n}_{1}{ }^{2}+1 / \mathrm{n}_{2}^{2}\right)\right\}= \\
&=[911.76334193052 \ldots \AA] /\left\{1 / \mathrm{n}_{1}^{2}-1 / \mathrm{n}_{2}^{2}{ }^{2}+0.5 \alpha^{2}\left(1 / \mathrm{n}_{1}^{4}-1 / \mathrm{n}_{2}^{4}\right)\right\} \tag{79}
\end{align*}
$$

$\lambda(n-\infty)=[911.76334193052 \ldots \AA] /\left(1 / n^{2}+0.5 \alpha^{2} / n^{4}\right)$

Here $911.76334193052 \ldots \AA=1 / R_{H}$ is reversed Rydberg constant for hydrogen, $\alpha=\left\{c / 10^{7}\right\} \mathrm{e}^{2} / \hbar$ $=1 / 137.03599914 \ldots$ is fine structure constant.

Original Bohr letter (15 April 1914) with parameter $\pi^{2} e^{4} / h^{2} c^{2}$ (CGSE units: e $\sim 4.8 * 10^{-10}$ electric units; $\mathrm{h} \sim 6.6^{*} 10^{-27} \mathrm{erg}$ s; c $\sim 3 * 10^{10} \mathrm{~cm} / \mathrm{s}$) $=\pi^{2} \mathrm{c}^{2} \mathrm{e}^{4} / 10^{14} \mathrm{~h}^{2}($ in SI units, see Tab 1) $=$ $0.25 \alpha^{2}$ instead $0.5 \alpha^{2}$ in Eq 79, may be found in Hoyer (1981). In response to Bohr (20 April 1914), Prof Fowler reported experimental estimations for this parameter, 0.00003 to 0.00004 , which is closer to $0.5 \alpha^{2}=0.000026625677 \ldots$, as guessed in present study from Ampere law.

It should be noted that Eq (79) was deduced by Bohr from mass defect. However, this was just a commentary. So, let us deduce Eq (79) from mass defect. Taking binding energy from Eq (36), $\mathrm{E}_{\mathrm{n}}=\operatorname{chR}_{\mathrm{H}} / \mathrm{n}^{2}=\left[2.178685776 * 10^{-18} \mathrm{~J}\right] / \mathrm{n}^{2}$, mass defect is $\Delta \mathrm{m}_{\mathrm{n}}=\mathrm{E}_{\mathrm{n}} / \mathrm{c}^{2}=$ $\left[2.424114851 * 10^{-35} \mathrm{~kg}\right] / \mathrm{n}^{2}$. Thus, assuming that this is mass defect of electron, kinetic energy should be slightly reduced, and thus, binding energy should slightly enlarged by $\Delta \mathrm{m}_{\mathrm{n}} \mathrm{v}_{\mathrm{en}}{ }^{2} / 2=$ $0.5 \mathrm{E}_{\mathrm{n}} \mathrm{v}_{\mathrm{en}} 2 / \mathrm{c}^{2}=0.5 \mathrm{E}_{\mathrm{n} 1}\left(\mathrm{v}_{\mathrm{en} 1} / \mathrm{c}\right)^{2} / \mathrm{n}^{4}=0.5 \mathrm{E}_{n 1} \alpha^{2} / \mathrm{n}^{4}$. Thus, dissociation lines may be calculated as $\lambda(\mathrm{n}-\infty)=\mathrm{ch} /\left(\mathrm{E}_{\mathrm{n} 1} / \mathrm{n}^{2}+0.5 \mathrm{E}_{\mathrm{n} 1} \alpha^{2} / \mathrm{n}^{4}\right)=\mathrm{Eq}(80)$. Transition lines may be calculated as $\lambda\left(\mathrm{n}_{1}-\mathrm{n}_{2}\right)=$ $1 /\left(1 / \lambda_{\mathrm{nl}-\infty}-1 / \lambda_{\mathrm{n} 2-\infty}\right)=$ Eq. (79). As may be seen, both models, originating from mystical Ampere law give the same result. So, may be, mass defect arises dew to magnet force.

Fig. 3 Vacuum wavelengths of hydrogen Lyman series (\AA) and deviation (right panel) from Bohr model with rotating proton Eq (39). Black points: "critical compilation of experimental data" (Kramida 2010); crosses: lines from 3 independent Solar spectra from Parenti et al (2005). Solid curve is Bohr model with rotating proton and magnet tag (Eq. 79).

Fig. 4 Vacuum wavelengths of hydrogen Balmer series (\AA) and deviation (right panel) from Bohr model with rotating proton Eq (39). Black points: "critical compilation of experimental data" (Kramida 2010). Solid curve is Bohr model with rotating proton and magnet tag (Eq. 79).

However, additional binding energy causes additional mass defect, which also contributes into binding energy and closer approximation to "magnet model" (exact within 12 digits) is:
$\lambda\left(\mathrm{n}_{1}-\mathrm{n}_{2}\right)=[911.76334193052 \AA] /\left\{1 / \mathrm{n}_{1}{ }^{2}-1 / \mathrm{n}_{2}{ }^{2}+0.5 \alpha^{2}\left(1 / \mathrm{n}_{1}{ }^{4}-1 / \mathrm{n}_{2}{ }^{4}\right)+0.5 \alpha^{4}\left(1 / \mathrm{n}_{1}{ }^{6}-1 / \mathrm{n}_{2}{ }^{6}\right)\right\}$
$\lambda(\mathrm{n}-\infty)=[911.76334193052 \AA] /\left\{1 / \mathrm{n}^{2}+0.5 \alpha^{2} / \mathrm{n}^{4}+0.5 \alpha^{4} / \mathrm{n}^{6}\right\}$
Calculated wavelengths given in Tabs. 3 and 4. It should be noted, that difference between Eqs (79) and exact solution is almost negligible: $0.000002262 \AA$ at transition 1-2 and $0.000001293 \AA$ at transition $1-\infty$ (Lyman series); $0.0000009552 \AA$ at transition 2-3, and $0.0000003232 \AA$ at transition $2-\infty$ (Balmer series), etc. So, there seems no significant sense in Eq. (81). Nevertheless, Eq.(81) was applied here to reproduce $6^{\text {th }}$ sign after comma in Tabs 3-5.

Fig. 3 (right) shows the difference between Lyman wavelengths of Bohr model with rotation of proton (Eq. 39) and experimental data (Parenti et al, 2005; Kramida, 2010). As may be seen, large and wide Lyman lines (up to $n_{2}=9$) seems to be equally consistent with both model (Eq. 39 or 79). However, small and fine lines $\left(\mathrm{n}_{2}=10 \div 22\right)$ seems to be consistent with Eq (79). As may be seen in Fig. 4 (right), Eq. (79) is well consistent with Balmer series data.

Tab. 3 Lyman series, vacuum wavelengths (\AA).

Transition	Compilation of experimental data from Kramida (2010) (a)	Lyman series in Solar spectrum measured with automatic spacecraft (emission lines), Parenti et al, 2010 (3 spectra: 1; 2; 3)	Bohr model with rotation of proton and magnet tag
(Eq. 81)			

(a): data from Tab. 11 in Kramida (2010), initially, in reversed cm, with 6-7 digits.
(b): Line $(\sim 1215.6 \pm 0.5 \AA)$ was ~ 2 times stronger than upper limit of detector's scale.
(c): Lines were not distinguished dew to overlap with nearest H lines.

Tab 4. Balmer series, vacuum wavelengths (\AA).

Transition	Compilation of experimental data from Kramida (2010) $($ a)	Bohr model with rotation of proton and magnet tag (Eq. 81)
$2-3$	$6564.6046(\pm 0.03)$	6564.632943
$2-4$	$4862.7087(\pm 0.04)$	4862.697363
$2-5$	$4341.6930(\pm 0.006)$	4341.696675
$2-6$	$4102.8923(\pm 0.007)$	4102.904693
$2-7$	$3971.1977(\pm 0.006)$	3971.207297
$2-8$	$3890.1666(\pm 0.006)$	3890.162746
$2-9$	$3836.4844(\pm 0.006)$	3836.483887
$2-10$	$3798.9880(\pm 0.006)$	3798.987625
$2-11$	$3771.7047(\pm 0.006)$	3771.713017
$2-12$	$3751.2163(\pm 0.006)$	3751.229229
$2-13$	$3735.4314(\pm 0.006)$	3735.441329
$2-14$	$3723.0040(\pm 0.006)$	3723.008358
$2-15$	$3713.0344(\pm 0.006)$	3713.038228
$2-16$	$3704.9126(\pm 0.006)$	3704.918057
$2-17$	$3698.2098(\pm 0.006)$	3698.215124
$2-18$	$3692.6013(\pm 0.006)$	3692.616651
$2-19$	$3687.8800(\pm 0.006)$	3687.891890
$2-20$	$3683.8708(\pm 0.006)$	3683.867524
$2-21$	$3680.4162(\pm 0.006)$	3680.411286
$2-22$	$3677.4224(\pm 0.006)$	3677.420798
$(a): ~$		

(a): data from Table 10 in Kramida (2010), initially in reversed cm, with 7 digits

AIR SPECTRA

It should be also noted that observer fill bad in vacuum, and most of data were measured at atmospheric conditions (except Lyman series, because of aggressive behavior of oxygen in this spectral diapason). Speed of light in atmospheric air is smaller by $\sim 83 \mathrm{~km} / \mathrm{s}$. In result, wavelengths also become shorter:

$$
\begin{equation*}
\lambda_{\mathrm{Air}}=\mathrm{c}_{\mathrm{Air}} / v=\lambda_{\mathrm{vad}} / \mathrm{n}_{\mathrm{Air}} \tag{83}
\end{equation*}
$$

Here $\mathrm{n}_{\text {Air }}=\mathrm{c} / \mathrm{c}_{\text {Air }}$ is refractive index of air (~ 1.000277). In accordance with Ciddor (1996), refractive index of dry air with 450 ppm CO 2 may be calculated from:
$\mathrm{n}_{\text {Air }}=1+\mathrm{f}\left\{0.05792105 /\left(238.0185-1 /\left[\lambda_{\text {vac }}, \mu \mathrm{m}\right]^{2}\right)+0.00167917 /\left(57.362-1 /\left[\lambda_{\text {vac }}, \mu \mathrm{m}\right]^{2}\right)\right\}$
Here $\mathrm{f}=\mathrm{q}[\mathrm{P}, \mathrm{Atm}] * 288.15 /\left(\mathrm{t}^{\circ} \mathrm{C}+273.15\right)$, q is correction on humidity and CO_{2} content (here, $\mathrm{q}=$ 1: see Ciddor, 1996, for details). Note here that $\mathrm{t}^{\circ} \mathrm{C}$, and P , Atm are temperature and pressure of air between prism (or grating) and detector, or inside of monochromator.

In Tab. 5, experimental wavelengths of hydrogen Balmer series, measured in air (Curtis, 1914, Wood, 1922, Perepelitsa and Pepper, 2006) are compared with Bohr model with rotation of proton and magnet tag, adjusted to air pressure 1 Atm and various temperatures $0,15,30^{\circ} \mathrm{C}$.

As may be seen in Fig 6, wavelengths of Balmer series lines in air are 1-2 \AA smaller then in vacuum, whereas observers prefer ambient temperature $+15^{\circ} \mathrm{C}$ and 1 Atm , or, may be, $+20^{\circ} \mathrm{C}$ at pressure 1.01735 Atm .

Fig. 5 Difference between Balmer wavelengths, measured in air and vacuum (Eq. 79; left) and (right) difference between data measured in air and $\mathrm{Eq}(79) / \mathrm{Eq}(84)$ at $15^{\circ} \mathrm{C}$ and 1 Atm . Solid curve: $15^{\circ} \mathrm{C}, 1$ Atm (or, $20^{\circ} \mathrm{C}$ and 1.01735 Atm). Dashed curves: various temperatures and 1 Atm. Points: data from Wood, 1922, cubes: Curtis, 1914, crosses: Perepelitsa and Pepper, 2006.

Tab. 5 Balmer lines of hydrogen, measured in air (\AA).

Transi- tion	Perepelitsa and Pepper, 2006	Wood, 1922	Curtis, 1914	Bohr model with rotation of proton, and magnet tag, at $1 \mathrm{Atm}\left(\mathrm{dry}\right.$ air with 450 ppm $\left.\mathrm{CO}_{2}\right)$ $\mathrm{Eq}(81) / \mathrm{Eq}(84)$		
$\mathrm{t}^{\circ} \mathrm{C}(\mathrm{a})$	(nr)	(nr)	(nr)	$0^{\circ} \mathrm{C}$	$+15^{\circ} \mathrm{C}$	$+30^{\circ} \mathrm{C}$
$2-3$	6562.85	-	6562.793	6562.720434	6562.819964	6562.909648
$2-4$	4861.36	-	4861.326	4861.264784	4861.339338	4861.406516
$2-5$	4340.46	4340.465	4340.467	4340.409354	4340.476348	4340.536714
$2-6$	4101.74	4101.731	4101.738	4101.683502	4101.747054	4101.804319
$2-7$	3970.07	3970.073	3970.075	3970.022424	3970.084087	3970.139649
$2-8$	3889.05	3889.064	3889.051	3889.000161	3889.060663	3889.115180
$2-9$	3835.39	3835.397	-	3835.336036	3835.395772	3835.449598
$2-10$	-	3797.910	-	3797.850053	3797.909253	3797.962597
$2-11$	-	3770.634	-	3770.582913	3770.641725	3770.694718
$2-12$	-	3750.152	-	3750.104730	3750.163250	3750.215981
$2-13$	-	3734.371	-	3734.321147	3734.379443	3734.431972
$2-14$	-	3721.948	-	3721.891575	3721.949694	3722.002063
$2-15$	-	3711.980	-	3711.924169	3711.982146	3712.034387
$2-16$	-	3703.861	-	3703.806215	3703.864077	3703.919214
$2-17$	-	3697.159	-	3697.105112	3697.162879	3697.214930
$2-18$	-	3691.553	-	3691.508169	3691.565856	3691.617835
$2-19$	-	3686.833	-	3686.784697	3686.842317	3686.894236
$2-20$	-	3682.825	-	3682.761429	3682.818992	3682.870859
$2-21$	-	3679.372	-	3679.306135	3679.363648	3679.415472
$2-22$	-	3676.378	-	3676.316462	3676.373933	3676.425719

(a): temperature of air between prism (or grating) and detector, or inside of monochromator. (nr): not reported

CONCLUDING REMARKS

With help of Archimedes and Ampere, was obtained forgotten formula of Bohr, suggested in letter to Fowler at 15 April 1914, and deduced from mass defect. It appears to be, that this formula is consistent with experimental wavelengths of hydrogen atom spectral lines.

REFERENCES

Ciddor Ph.E. (1996) Refractive index of air: new equations for the visible and near infrared. Applied Optics 35 (1996) No. 9, pp. 1566-1573.

Curtis (1914) Wave-lengths of hydrogen lines and determination of the series constant. Proceedings of the Royal Society of London. Series A 90 (1914) No 622, pp. 605-620. (https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1914.0093)

Hoyer U. (1981) Volume 2. Work on Atomic Physics (1912-1917). In: Niels Bohr collected works. (Ed. Rosenfeld) North-Holland Publishing Company. Amsterdam-New YorkOxford.

Kramida A.E. (2010) A critical compilation of experimental data on spectral lines and energy levels of hydrogen, deuterium, and tritium. Atomic Data and Nuclear Data Tables 96 (2010) pp. 586-644.

Mohr P.J., Newell D. B., Taylor B.N. (2016) CODATA recommended values of the fundamental physical constants: 2014. Journal of Physical and Chemical Reference Data. 45 (2016) 043102-(1-74). (https://ws680.nist.gov/publication/get_pdf.cfm?pub_id=920686)

Parenti S., Vial J.-C., Lemaire P. (2005) Prominence atlas in the SUMER range 800-1250 \AA. II Line profile properties and ions identifications. A\&A 443 (2005) 679-684.

Pivovarov S. (2014) Energy of beta decay and size of neutron. Basis, the Journal of Basic Science 2 (2014) 11-15. (http://basisj.narod.ru/Basis2014_11-15.pdf)

Perepelitsa D.V. and Pepper B.J. (2006) Spectroscopy of hydrogenic atoms. (https://pdfs.semanticscholar.org/b677/c85c341f53a874666d54f996c464ff7e6578.pdf)

Wood, R.W. (1922) XLIX. Atomic hydrogen and the Balmer series spectrum. Philosophical Magazine series 6, 44:226, pp. 538-546.

